电源调试过程中的趣事与心得

最新更新时间:2011-09-17来源: 互联网关键字:电源调试  趣事 手机看文章 扫描二维码
随时随地手机看文章

(一)原理方面,我做的是多路反激电源。输出级都另用LC滤波器了。之前只会计算LC的截止频率,觉得截止频率越低,在开关频率处的衰减越大,就认为是这个LC越大越好,在做环路补偿的时候需要功率部分的模型,我看过的教材上全是输出用一个电容的情况就是不存在后级LC滤波,如果按照教材上的计算方法,不考虑LC,但实际431反馈电压是取自LC后,如果在环路中在加入LC这一段,给光耦和431 供电的端又在LC前,二种方法都不合适。后来经人指点认识到后级LC主要是为了滤除高频的干扰,截止频率可以选在开关频率的1/10到1/20处,在开关频率处的衰减也可以满足需要,在穿越频率处的相移也很小,在计算环路的时候可以不考虑。其中电感一般3.3uH即可,选在我后级电容将以前的1000uF 换成47uF,效果也很不错的。

(二)说说自己实际调试的时候出现的这个比较可笑的问题,我的电源是3路输出,互相隔离,有2 个12V的是并绕的,带负载也是一样的,后级C和LC值完全一样,包括牌子也一样,但是输出的值用电压表看的时候一个来回跳,一个很稳,用示波器看的时候,来回跳的那个出现不规则的上下干扰,示波器放在2.5S档上有时候也很明显,但是另外一路就很稳,。我就想是不是这路离主控那一路比较近,受影响了?就开始调试主路,将431周边的参数来回试啊,试了快一周了。没有结果,有时候想会不会是刚换完参数得烧一会的原因呢?我用将电压表加着,一直开着。昨天上午烧了不到10分钟,不稳的那一路突然电压值变为0,而主路很正常,我恐慌下赶快断开空开(以前炸怕了),怀疑二极管烧了,检查,没坏,负载测试,没坏。心想可能刚才看错了,再开机还是没有输出,就想着哦,能测试的地方都测测吧,反正也不知道是哪里的原因,结果侧刀那个12V板子的二个输出口时负载无穷大,这不奇怪了吗?输出端我接的50欧的大电阻啊!再一侧这二个端口到负载的连线,一个不通!但是拔了拔线,依然很牢固。我就把插排拔了下来,换了个头好使了,输出电压波形居然也直了!原来是由于输出3路,我用的6端子那种插座。调试的时候每次拿过来焊一个件就要拔一次。时间长了就把里面拔的接触不良了,但是外面看不出来,之前因为接触不良,所以就出现不规则的上下波动,有时候幅值到0.4V呢,而最终在最后的时候是彻底接触不上了,就和负载形成开路!但是由于我有假负载,所以其实电源还是正常工作的,还害了我虚惊一场。想着想起来,每次接好板子,上电之前都得认真检查,要避免出现未接牢固或者是虚焊的情况。

还有一次因为实验的时候焊的器件接头都比较长,反过来焊板子的时候就把器件压趴下了,反过来就直接上电,结果只听见啪的一声,保险丝就断了,掉电检查时发现817呗炸裂开了,而导致的原因是300V的线过来碰到光耦上了。由于这种低级错误耽误了不少时间,也烧了些器件,今天想到写出来,就是希望以后能在上电之前先认真检查,避免出现这种低级的错误!

(3)这是我调试的时候一种做法,感觉还不错,拿出来分享一下,我在电源输入和输入插排之前接了个空气开关,在上电特别是第一次上电的时候先把空气开关闭合,然后用手去查插销,如果后级万一出现短路之类的情况,空开马上就跳闸,这样可以保护后级的电路。这么接了之后现在还没出现过问题。

下面开始更新,继续将学习的一些东西发出来和大家探讨:

反馈是很重要的一个环节,下面分别探讨下这种补偿方式,从复杂的开始:

双极点双零点补偿器的转折频率,及其决定因素:

 

 

上图是这个的示意图,下图是伯德图。伯德图里用到这个转折频率,所谓转折频率就是在一个频段一个参数是关键作用,到另一个频段又是另一个参数起关键作用。在RC组成的电路中,由于C的阻抗有随着频率变化,而R不会变化。所以转折频率就是RC之间谁起关键作用的转换。这个转折点就是二者阻抗相等的点。即R=1/WC 所以得到转折频率为f=w/2pi=1/2piRC

先说反向输入端和输出之间的这一部分,一般C2>>C1

在FZ1的前后,频率小时C2,C1阻抗无穷大,R2阻抗有限。所以R2C2支路阻抗主要是C2,由于C2>>C1,所以阻抗C1>>C2,并联部分由阻抗小的决定,因此在低频时主要是C2决定,随着频率增加,C2阻抗降低,直到R2C2中主要有R2决定,在这个期间二者阻抗相等时的频率为转折频率FZ1。其他几个转折频率可以同样的方法得出。

局部电路单独看的时候RC串联等式结果为0,RC并联代数式结果是无穷大。所以对于上图来说R2C2和R3C3是代数式结果为0,R1C3和R2C1的代数式结果为无穷大,但是因为在求传函的时候,R2C2C1在分子上,R3R1C3在分母上。分子为0,分母为无穷大的是零点,分子是无穷大,分母是0的是极点。所以得出这个电路的2个零点2个极点分别是:

零点:R2C2  R1C3

极点:R3C3  R2C1

仅仅知道几个零点极点的位置,只能确定这个曲线的样子和左右的位置,但是上下的位置不能确定,这就还需要一个量来定。由于伯德图中有2个平台,就选这2个平台来确定此时的增益,看第一个平台,零点1后面主要有R2起作用,零点2前面主要用R1起作用,所以在图中的阻抗可以简化为反向端限流的是R1,反馈电阻是R2,此时的增益是R2/R1。

在2个极点处,同理是有C1和C3起作用,增益就是(1/wc1)/(1/wc3)=c3/c1。


 

关键字:电源调试  趣事 编辑:冰封 引用地址:电源调试过程中的趣事与心得

上一篇:让开关电源设计全过程飞一会
下一篇:开关电源原理及各功能电路详解(上)

推荐阅读最新更新时间:2023-10-18 15:45

基于AT91RM9200系统电源的设计与调试
随着计算机技术、半导体技术以及电子技术的发展,嵌入式系统以其体积小、可靠性高、功耗低、软硬件集成度高等特点广泛应用于工业制造、过程控制、通信、仪器、仪表、汽车、船舶、航空、航天、军事装备、消费类产品等众多领域。嵌入式系统硬件设计与调试是嵌入式系统设计成功的基础,而硬件电路中电源电路的设计与调试则是系统硬件调试成功的关键。本文从实际应用出发,结合在焊接机控制系统中嵌入式系统电源的设计与调试过程中碰到的一些问题,分析讨论嵌入式系统电源的设计与调试方法。 1 系统硬件结构 在基于嵌入式系统的焊接机控制系统设计中,以AT91RM9200作为系统核心微处理器,依据控制系统要求外扩了SDRAM、SRAM、 Flash,键盘、液晶显示电
[电源管理]
基于AT91RM9200系统<font color='red'>电源</font>的设计与<font color='red'>调试</font>
基于AT91RM9200系统电源的设计与调试
随着计算机技术、半导体技术以及电子技术的发展,嵌入式系统以其体积小、可靠性高、功耗低、软硬件集成度高等特点广泛应用于工业制造、过程控制、通信、仪器、仪表、汽车、船舶、航空、航天、军事装备、消费类产品等众多领域。嵌入式系统硬件设计与调试是嵌入式系统设计成功的基础,而硬件电路中电源电路的设计与调试则是系统硬件调试成功的关键。本文从实际应用出发,结合在焊接机控制系统中嵌入式系统电源的设计与调试过程中碰到的一些问题,分析讨论嵌入式系统电源的设计与调试方法。 1 系统硬件结构 在基于嵌入式系统的焊接机控制系统设计中,以AT91RM9200作为系统核心微处理器,依据控制系统要求外扩了SDRAM、SRAM、 Flash,键盘、液晶显示电路可
[电源管理]
基于AT91RM9200系统<font color='red'>电源</font>的设计与<font color='red'>调试</font>
示波器真的是调试模拟电源最好工具
依本人之见,示波器是调试模拟电源的最好工具,对于数字控制电源而言也是如此。通过代码进行单步执行不是一个可行的办法,因为这很容易烧掉 FET。然而,数字系统的挑战在于很多信号在芯片内部消失。敬请使用 UCD3138 PFC EVM 用户指南,这里有几个可演示固件控制 PFC 的方框图实例。 首先是芯片外部硬件中所发生情况的原理图: 您可以看到固件外部仍有可使用示波器进行监控的模拟信号。另外,您是否注意到方框底部输出的信号?这些信号将进入 UCD3138 数字控制器并由固件处理,请看下图。 方框中的每个箭头都代表一个通过下面所述方法送出到器件引脚并由此送到示波器的内部信号。但始于 COMP_D、E 及 F 这 3 个比较
[测试测量]
汽车界的的那些趣事
在汽车历史上有各种千奇百趣的世界纪录,虽然这些纪录并没有多大的实际用途,但它们都代表着汽车的发展历程,看待汽车品牌及各式车型的发展,切记不要用今天所谓审美观、或者中国式的汽车观去看待,对着特定历史条件下出现的车型必有其原因,你不懂,仅仅是咱们没机会经历那些历史而已。 1997年Thrust SSC;;最快1,228km/h;最大马力110,000匹;最耗油5,500L/100km Thrust SSC,历史上第一台在正式规则下,在陆地突破音速的车,也是陆地极速纪录冠军。能打破陆地极速纪录的车,已经不是单单使用内燃机引擎那么简单,而是使用了两具用于英国皇家空军F-4幽灵二式战斗机上的劳斯莱斯“Spey”系列涡扇引擎作为动力。
[嵌入式]
汽车界的的那些<font color='red'>趣事</font>
基于AT91RM9200系统电源的设计与调试
      随着计算机技术、半导体技术以及电子技术的发展,嵌入式系统以其体积小、可靠性高、功耗低、软硬件集成度高等特点广泛应用于工业制造、过程控制、通信、仪器、仪表、汽车、船舶、航空、航天、军事装备、消费类产品等众多领域。嵌入式系统硬件设计与调试是嵌入式系统设计成功的基础,而硬件电路中电源电路的设计与调试则是系统硬件调试成功的关键。本文从实际应用出发,结合在焊接机控制系统中嵌入式系统电源的设计与调试过程中碰到的一些问题,分析讨论嵌入式系统电源的设计与调试方法。    1  系统硬件结构   在基于嵌入式系统的焊接机控制系统设计中,以AT91RM9200作为系统核心微处理器,依据控制系统要求外扩了SDRAM、SRAM、Fla
[电源管理]
电源调试过程中的心得体会
首先我是一个电源莱鸟,做电源时间不长,也是老出问题。并且在调试的时候出现的有些问题觉得很是可笑的,今天晚上把这段时间调试时的这段经历写下来,给像我一样的新手提个醒,也请过来人拍砖指点。   (一)原理方面,我做的是多路反激电源。输出级都另用LC滤波器了。之前只会计算LC的截止频率,觉得截止频率越低,在开关频率处的衰减越大,就认为是这个LC越大越好,在做环路补偿的时候需要功率部分的模型,我看过的教材上全是输出用一个电容的情况就是不存在后级LC滤波,如果按照教材上的计算方法,不考虑LC,但实际431反馈电压是取自LC后,如果在环路中在加入LC这一段,给光耦和431 供电的端又在LC前,二种方法都不合适。后来经人指点认识到后级LC主
[电源管理]
<font color='red'>电源</font><font color='red'>调试</font>过程中的心得体会
示波器频域分析如何应用于电源调试
电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。 示波器频域分析在电源调试的应用 本文谈到这么多年来最受关注的电源噪声测量问题,有最实用的经验总结,有实测案例佐证,有仿真分析相结合。 在电源噪声的分析过程中,比较经典的方法是使用示波器观察电源噪声波形并测量其幅值,据此判断电源噪声的来源。但是随着数字器件的电压逐步降低、电流逐步升高,电源设计难度增大,需要使用更加有效的测试手段来评估电源噪声。本文是使用频域方法分析电源噪声的一个案例,在观察时域波形无法定位故障时,通过F
[测试测量]
示波器频域分析如何应用于<font color='red'>电源</font><font color='red'>调试</font>?
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved