整流滤波电路和钳位保护电路的设计

最新更新时间:2011-11-10来源: OFweek半导体照明网关键字:整流  滤波  钳位  保护电路 手机看文章 扫描二维码
随时随地手机看文章

  本文介绍输入整流滤波器及钳位保护电路的设计,包括输入整流桥的选择、输入滤波电容器的选择、漏极钳位保护电路的设计等内容,讲解图文并茂且附实例计算。

  1 输入整流桥的选择

  1)整流桥的导通时间与选通特性

  50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从 0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。50Hz交流电的半周期为 10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原 理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。

  最后总结几点:

  (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。

  (2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。

  (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。

  

  2)整流桥的参数选择

  隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。

  硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。

  整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流 IR(μA)。整流桥的反向击穿电压URR应满足下式要求:

  

  举例说明,当交流输入电压范围是85~132V时,umax=132V,由式(1)计算出UBR=233.3V,可选耐压400V的成品整流桥。对于宽范 围输入交流电压,umax=265V,同理求得UBR=468.4V,应选耐压600V的成品整流桥。需要指出,假如用4只硅整流管来构成整流桥,整流管 的耐压值还应进一步提高。辟如可选1N4007(1A/1000V)、1N5408(3A/1000V)型塑封整流管。这是因为此类管子的价格低廉,且按 照耐压值“宁高勿低”的原则,能提高整流桥的安全性与可靠性。

  设输入有效值电流为IRMS,整流桥额定的有效值电流为IBR,应当使IBR≥2IRMS。计算IRMS的公式如下:

  

  式中,PO为开关电源的输出功率,η为电源效率,umin为交流输入电压的最小值,cosφ为开关电源的功率因数,允许cosφ=0.5~0.7。由于整 流桥实际通过的不是正弦波电流,而是窄脉冲电流(参见图1),因此整流桥的平均整流电流Id 例如,设计一个7.5V/2A(15W)开关电源,交流输入电压范围是85~265V,要求η=80%。将Po=15W、η=80%、umin=85V、 cosψ=0.7一并代入(2)式得到,IRMS=0.32A,进而求出Id=0.65×IRMS=0.21A。实际选用lA/600V的整流桥,以留出 一定余量。

  2 输入滤波电容器的选择

  1)输入滤波电容器容量的选择

  为降低整流滤波器的输出纹波,输入滤波电容器的容量CI必须选的合适。令每单位输出功率(W)所需输入滤波电容器容量 (μF)的比例系数为k,当交流电压 u=85~265V时,应取k=(2~3)μF/W;当交流电压u=230V(1±15%)时,应取k=1μF/W。输入滤波电容器容量的选择方法详见附 表l,Po为开关电源的输出功率。

  

  2)准确计算输入滤波电容器容量的方法

        输入滤波电容的容量是开关电源的一个重要参数。CI值选得过低,会使UImin值大大降低,而输入脉动电压UR却升 高。但CI值取得过高,会增加电容器成本,而且对于提高UImin值和降低脉动电压的效果并不明显。下面介绍计算CI准确值的方法。

  设交流电压u的最小值为umin。u经过桥式整流和CI滤波,在u=umin情况下的输入电压波形如图2所示。该图是在Po=POM,f=50Hz、整流桥的导通时间tC=3ms、η=80%的情况下绘出的。由图可见,在直流高压的最小值UImin上还叠加一个幅度为UR的一次侧脉动电压,这是CI在充放 电过程中形成的。欲获得CI的准确值,可按下式进行计算:

 

  

  举例说明,在宽范围电压输入时,umin=85V。取UImin=90V,f=50Hz,tC=3ms,假定Po=30W,η=80%,一并带入(3)式 中求出CI=84.2μF,比例系数CI/PO=84.2μF/30W=2.8μF/W,这恰好在(2~3)μF/W允许的范围之内。

  

  3 漏极钳位保护电路的设计

  对反激式开关电源而言,每当功率开关管(MOSFET)由导通变成截止时,在开关电源的一次绕组上就会产生尖峰电压和感应电压。其中的尖峰电压是由于高频变压器存在漏感(即漏磁产生的自感)而形成的,它与直流高压UI和感应电压UOR叠加在MOSFET的漏极上,很容易损坏MOSFET。为此,必须在增加 漏极钳位保护电路,对尖峰电压进行钳位或者吸收。

  1)漏极上各电压参数的电位分布

  下面分析输入直流电压的最大值UImax、一次绕组的感应电压UOR、钳位电压UB与UBM、最大漏极电压UDmax、漏一源击穿电压U(BR)DS这6 个电压参数的电位分布情况,使读者能有一个定量的概念。对于TOPSwitch—XX系列单片开关电源,其功率开关管的漏一源击穿电压 U(BR)DS≥700V,现取下限值700V。感应电压UOR=135V(典型值)。本来钳位二极管的钳位电压UB只需取135V,即可将叠加在UOR 上由漏感造成的尖峰电压吸收掉,实际却不然。手册中给出UB参数值仅表示工作在常温、小电流情况下的数值。实际上钳位二极管(即瞬态电压抑制器TVS)还 具有正向温度系数,它在高温、大电流条件下的钳位电压UBM要远高于UB。实验表明,二者存在下述关系:

  

  这表明UBM大约比UB高40%。为防止钳位二极管对一次侧感应电压UOR也起到钳位作用,所选用的TVS钳位电压应按下式计算:

  

  此外,还须考虑与钳位二极管相串联的阻塞二极管VD的影响。VD一般采用快恢复或超快恢复二极管,其特征是反向恢复时间(trr)很短。但是VDl在从反向截止到正向导通过程中还存在着正向恢复时间(tfr),还需留出20V的电压余量。

  考虑上述因素之后,计算TOPSwitch一 最大漏一源极电压的经验公式应为:

  

  TOPSwitch—XX系列单片开关电源在230V交流固定输入时,MOSFET的漏极上各电压参数的电位分布如图3所示,占空比D≈26%。此时 u=230V±35V,即umax=265V,UImax=umax≈375V,UOR=135V,UB=1.5 UOR≈200V,UBM=1.4UB=280V,UDmax=675V,最后再留出25V的电压余量,因此U(BR)DS=700V。实际上 U(BR)DS也具有正向温度系数,当环境温度升高时U(BR)DS也会升高,上述设计就为芯片耐压值提供了额外的裕量。

  

  2)漏极钳位保护电路的设计

  漏极钳位保护电路主要有以下4种设计方案(电路参见图4):

 

  

 

  (1)利用瞬态电压抑制器TVS(P6KE200) 和阻塞二极管(超陕恢复二极管UF4005) 组成的TVS、VD型钳位电路,如(a)图所示。图中的Np、NS和NB分别代表一次绕组、二次绕组和偏置绕组。但也有的开关电源用反馈绕组NF来代替偏置绕组NB。

  (2)利用阻容吸收元件和阻塞二极管组成的R、C、VD型钳位电路,如(b)图所示。

  (3)由阻容吸收元件、TVS和阻塞二极管构成的R、C、TVS、VD型钳位电路,如(c)图所示。

  (4)由稳压管(VDZ)、阻容吸收元件和阻塞二极管(快恢复二极管FRD)构成的VDz、R、C、VD型钳位电路,如(d)图所示。

  上述方案中以(c)的保护效果最佳,它能充分发挥TVS响应速度极快、可承受瞬态高能量脉冲之优点,并且还增加了RC吸收回路。鉴于压敏电阻器(VSR) 的标称击穿电压值(U1nA)离散性较大,响应速度也比TVS慢很多,在开关电源中一般不用它构成漏极钳位保护电路。

  需要指出,阻塞二极管一般可采用快恢复或超快恢复二极管。但有时也专门选择反向恢复时间较长的玻璃钝化整流管1N4005GP,其目的是使漏感能量能够得到恢复,以提高电源效率。玻璃钝化整流管的反向恢复时间介于快恢复二极管与普通硅整流管之间,但不得用普通硅整流管1N4005来代替lN4005GP。

  常用钳位二极管和阻塞二极管的选择见附表2。

  

关键字:整流  滤波  钳位  保护电路 编辑:探路者 引用地址:整流滤波电路和钳位保护电路的设计

上一篇:车载单元中智能电源的设计与实现
下一篇:高功率半导体激光器的波长稳定技术

推荐阅读最新更新时间:2023-10-18 16:03

集成方案简化模拟滤波器设计
本篇应用笔记介绍开关电容滤波器用于ADC (模数转换器)输入端抗混叠和降噪以及DAC (数模转换器)输出端信号重建滤波的优势。总结了MAX74xx系列开关电容滤波器相对连续时间有源滤波器的优势并给出了一些应用实例。 -- ======================================================================= -- -- CONTENT: DB HTML -- -- ======================================================================= -- 模拟滤波器在电子信号合成系统中应用广泛,可为ADC提供抗混叠和
[模拟电子]
集成方案简化模拟<font color='red'>滤波</font>器设计
PWM整流器中相序调整的新方法
3 相序调整原理   设a,b,c 为电网的三相端,a′,b′,c′为整流器三相输入端,其连接方式有:①a′-a,b′-b,c′-c;②a′-b,b′-c,c′-a;③a′-c,b′-a,c′-b;④a′-c,b′-b,c′-a;⑤a′-b,b′-a,c′-c;⑥a′-a,b′-c,c′-b.连接法①是相位直接匹配,在连接法②,③中,电网和整流器相位依次交错但相序一致,用这3 种连接方法能产生正确的驱动波形,线电压分别为:      连接法④~⑥中,仅两相交错连接,相序改变,从而影响驱动波形的输出,线电压分别为:      式(11)和(8)、式(12)和(9)、
[电源管理]
PWM<font color='red'>整流</font>器中相序调整的新方法
在Labview开发环境中实现相关滤波的设计方法
1、引言 在目前的测试领域中,越来越广泛地利用相关检测的方法进行滤波。利用相关滤波可以方便地从复杂的待测信号(包括有用信号、直流偏置、随机噪声和谐波频率成分等)中分离出某一特定频率的信号。在数字技术迅速发展以后,相关滤波也经常利用A/D板对信号采样后,在计算机中实现,成为数字滤波的一种形式。本文设计了一种实现相关滤波的方法,这是相关分析在测试技术中的一个典型应用。图1所示为相关滤波器的典型框图。 Labview是美国国家仪器公司推出的一种基于“图形”方式的集成化程序开发环境,是目前国际上惟一的编译型图形化编程语言。在以PC机为基础的测量和工控软件中,Labview的市场普及率仅次于C++/C语言。Labview开发环境具有一系
[测试测量]
在Labview开发环境中实现相关<font color='red'>滤波</font>的设计方法
非线性控制理论在有源滤波技术中的应用
1  引 言   随着电力电子设备等非线性负载的广泛应用,电网中的谐波问题日益严重,造成了电网电压和电流波形严重畸变,对供电质量造成严重的污染,电网中的谐波不仅危害电网本身而且危害其周边设备。如何消除电网中的高次谐波和无功电流使之成为洁净电源,已成为电力电子学、电力系统中的一个重要问题。仅仅利用无源滤波技术治理谐波已经不能满足要求,随着电力电子技术的不断发展,人们将滤波研究方向逐渐转向有源滤波器,它已经成为电力电子应用极具生命力的发展方向。同时随着微电子技术的迅速发展,高精度、高速处理器(如DSP)的出现,使复杂的参量和系统状态实时计算或估计成为可能,并且使现代控制理论能够应用于电力电子系统。   有源滤波器的控制主要由谐波信号的
[电源管理]
非线性控制理论在有源<font color='red'>滤波</font>技术中的应用
Littelfuse肖特基势垒整流器将超低正向电压降、高电流处理能力与紧凑结构相结合
 中国,北京,2017年7月26日讯 - Littelfuse, Inc.,作为全球电路保护领域的领先企业,今日宣布推出肖特基势垒整流器系列。该系列产品的性能优于商业、工业和和汽车应用中的传统开关二极管。下面就随模拟电子小编一起来了解一下相关内容吧。  DST系列肖特基势垒整流器将超低正向电压降、高电流处理能力、高结温能力和低泄漏性能相结合,并采用紧凑型TO-277B表面安装式封装。 针对高达10A的汽车应用,它可提供与D-PAK封装肖特基势垒整流器相同或更优越的性能,而尺寸仅为后者的1/3。 观看视频。 DST系列肖特基势垒整流器 DST系列肖特基势垒整流器的典型应用包括高频开关电源(SMPS)和汽车应用DC-DC转换器
[模拟电子]
基于HFSS与ADS结合的微波滤波器设计
抽头式交指线微波滤波器具有较多优良特性:结构紧凑、结实,可靠性好;谐振器间的间隔较大,对加工精度要求不高;一般在没有电容加载情况下,谐振杆的长度近似为λ0/4,第二通带的中心在3ω0上,也有较好的阻带特性;另外,在ω=0和ω=ω0的偶数倍上,具有高次衰减极点,因而阻带衰减和截止率都比较大;既可以作为印刷电路形式,又可以用较粗的杆作成自行支撑,而不用介质。基于上述,交指型滤波器的谐振器既可用矩形杆,也可用圆杆实现。下面给出利用矩形杆的微波滤波器的设计实例。 经过多位高工的研讨,本微波实训平台设计的滤波器主要是针对前级的天线而来的,即要实现最后的级联。所以有必要阐述下前级的天线的具体规格: 设计的天线是在2.36GHz附近工作,而我在
[电源管理]
基于HFSS与ADS结合的微波<font color='red'>滤波</font>器设计
基于单片机和CPLD的DDS正交信号源滤波器的设计
1 前 言 由于传统的多波形函数信号发生器需采用大量分离元件才能实现,且设计复杂,这里提出一种基于CPLD的多波形函数信号发生器。它采用CPLD作为函数信号发生器的处理器,以单片机和CPLD为核心,辅以必要的模拟和数字电路,构成的基于DDS(直接数字频率合成)技术、波形稳定、精度较高的多功能函数信号发生器。 2 系统设计 图1给出系统设计框图,该系统设计主要由CPLD电路、单片机电路、键盘输入液晶显示输出电路以及D/A转换电路和低通滤波器等电路组成。 2.1 频率合成器 该系统设计采用直接数字式频率合成DDS(Direct Digital Frequency Synthesis)技术,采用ROM存储
[单片机]
基于单片机和CPLD的DDS正交信号源<font color='red'>滤波</font>器的设计
利用可编程逻辑器件设计有限冲激响应滤波
  1 引 言 一个模拟集成运算放大器可实现一个二阶 滤波器,高阶滤波器可由二阶滤波器串联而成。然而,无源元器件 实现滤波器的误差值为1.5%或更高,这需要提高元器件的性能。滤波器的典型的调试方法是不断的更换元器件值。而且,运算放大器要获得高的增益带宽,需要相位漂移保持最小或要保持闭环系统的稳定,这必然增加工程中实现滤波器的难度。 随着数字信号处理的发展,数字滤波器比传统的模拟滤波器在设计的选择中更有吸引力。因为数字系统的信号是数字量,他相对于模拟滤波器更容易进行滤波代数运算。而且,数字滤波器没有模拟滤波器随时间、温度、电压漂移的优点。他能很容易地实现过滤低频信号的设计目的。还有,数字滤波器能实现近似的
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved