一种基于TDAl6846的新型有源功率校正电路设计

最新更新时间:2011-12-10来源: 互联网关键字:TDAI6864  新型有源功率  校正电路 手机看文章 扫描二维码
随时随地手机看文章

1 概述

早期的功率因数校正技术(PFC)主要是靠无源器件电感、电容实现的,称之为无源PFC技术。其方法是,在整流桥后面串接一个较大的电感,以改善滤波电容充电波形和增加电流的连续性,达到提高功率因数的目的。这种无源PFC技术虽然实施简单,但是体积大,很笨重,效果也不理想,功率因数仅可校正至0.85左右[1]。

近年来,随着微电子技术和电力电子技术的发展,一种以boost变换器为主的有源功率因数校正器(APFC)得到了发展。这种APFC变换器大多工作于连续导电模式(CCM),其工作原理是:采用多数入口乘法器(Multiplier),取样整流后的脉动波形,并和输出电压误差放大器的误差电压相乘,经电流调节环节产生PWM波形,使经过电感的电流按正弦规律变化,从而达到了PFC目的。这种校正方法可使电源的功率因数接近1,因此广泛地应用于电力电子设备中[2]。但是这种APFC技术由于结构较复杂,较适合于较大功率容量的变流设备;而对于大量应用的200 W以下的变流设备,就显得不合适。

本文推出的以"电荷泵"(Charge Pump)校正原理设计的APFC电路,由于结构简单、制作方便,适合于较小容量的电子设备,有广阔的应用前景。

2 电荷泵功率因数校正技术

2.1 原理简介

在普通的容性负载整流电路中,电流仅出现在正弦电压的峰值附近,如图1(a)所示。图中,Vm表示输入交流电压波形,Im表示电流波形。其工作原理是:当整流后的正弦电压小于滤波电容两端电压时,整流二极管不导通,亦无电流流入。只有整流后的电压大于滤波电容上的电压时才有电流。所以在输入电路中,给电容充电的电流不连续,从而使其相位与电压不一致,造成功率因数下降。如果采取某些措施,使整流后电压在低于滤波电容上的电压时也有电流流入,而且电流的变化规律和输入电压波形一致,就可提高其功率因数,电荷泵电路就具有上述功能;Imp表示经电荷泵电路后的电流波形。

电荷泵电路的特点就是能使电流由低电势流向高电势,并保持正弦波形状,其工作原理如图1(b)所示。图中V1表示经整流后的输入电压,V2表示滤波电容C2上的电压,V3为辅助电压。在该电路中即使V1V2一V1,从而使VD>V2。这样D1被截止,D2导通,C3通过D2放电,电流流向V2,实现了较低电压V1间接流向V2的目的。实际上通过这种电路使V1完成了给C2充电的过程。

在电荷泵电路中,每次传送的电量为:

Q=[V3一(V2一V1)]C3=(V3+V1一V2)C3 (1)

如果V3的频率为f3,则传送的电流(即输入电流)I1为:

I1=(V3+V1一V2)C2f3 (2)

上式中,V3是V2经开关变压器和二极管产生的(参见图4)。在不考虑变压器初级电阻和二极管正向压降的情况下,V2=V3。因此,式(2)可以变形为:

I1=VlC3f3=k·V1 (3)

由式(3)可见,这时输入电流随输入电压V1的正弦包络变化,从而达到了功率因数校正的目的。

图2给出了实际应用结构图。该图中的电容C,整流桥BR和二极管D分别代替了图1(b)中的C3,D1和D2。从结构上讲,该图是一个标准的开关电源电路。图中的电感L,快恢复二极管D和电容C既完成了电荷泵的功能,也构成了一个能吸收由开关管T在开关过程中激起的尖峰电压的缓冲电路。图中,电荷泵是插入在BR,滤波电容Cp的正端和开关管T的漏极之间,如图中虚线框内所示。当开关管T导通时,输入电压Vin经BR整流后的电压Vinr给C充电。当T关断时,C经过D给Cp充电,从而完成"泵电"的过程。为了防止形成瞬时尖峰脉冲,串接了电感L。

下面简述该电路吸收尖峰干扰脉冲的原理。变压器的初级电感Lp,C和快恢复二极管D构成了一个交流闭环回路。当开关管关闭后,变压器中储存的能量开始释放。由于交流闭环的存在,变压器能量释放形成的浪涌电流被旁路,并形成一个衰减振荡。由于该振荡的耗能作用,使得其振幅和频率降低到电路可靠工作所能容许的程度。利用电荷泵电路完成缓冲功能的好处是既节省了电子元件;又使吸收过程中能量损耗极小,从而也提高了电源系统的效率。

这种APFC电路的突出优点就是结构简单,通过对常规缓冲电路进行合理调整,可以很容易变成具有PFC功能的高性能开关电源。由于电荷泵中的电容C提供了一个高频通路,因此其效能可通过载波频率而确定;也就是说,输入电路的电流波形的相位可通过改变载波频率来校正。

2.2 波形分析

下面用图3波形对PFC电荷泵电路进行分析,图中的电压、电流波形都是以输入交流电压为230 V测定的。

设在t0时刻功率管T导通,其漏极电压Vt由约600 V电平降至O V,由于电感的作用,变压器初级电流Ip同时开始逐步上升。同时由于Vt电压的下跳,通过电容器C传至L,D的连接处P(参见图2),使该点电压Vp由400 V下跌至一200 V左右。由于Vp变负,使与该点连接的电感线圈中的电流IL开始增加。该电流对电容C充电,并使Vp电压开始爬升。在t1时刻,经由变压器TR初级电感Lp和电感L的充电过程结束,并由控制电路使功率管关闭。这时电压Vt和与Vt相关的Vp再次升高,直至Vp的电压等于电容器Cp上的电压Vcp为止。尽管Vt由于Lt释放能量的原因继续爬升,由于D的箝位作用,使Vp维持电容器Cp电压Vcp之值(约400 V)不变。与此同时,原来给电容器C充电的IL通过二极管D流向电容器Cp,使留在L里的能量转移到了Cp。这样,使电流从输入电压瞬时值较低端向电容器Cp的高电压Vcp流动。

在t1时刻之后,由于D的续流作用,使初级电流Ip沿着Lp,C,D方向继续流动,直至次级二极管导通,变压器开始向次级放电为止(t2时刻)。在此期间,由于Ip的存在,使Vt继续攀升,直至Ip等于零的瞬间,Vt稳定在600 V。在整个的放电区间(t2~t3),IL逐步减少,但Vp维持原电压不变。

在功率管导通的t0~t1间隔内,是电感线圈L储能的时间,该时间间隔△T越大,L中储存的能量越多,电流的值亦愈大。控制△T的因素有2个:一是次级负载,他和△T成正比关系;2是输入回路的电压值,成反比关系,也就是说输入电压越低,△T的值越大。在△T期间"电荷泵"中电容器C的充电电流Ic也逐步增加,流向和图2所标的方向相反,构成功率管漏极电流的一部分,如图3所示。


由于功率管的开关周期远远小于主回路输入电压整流的包络周期(10 ms),因此Cp的充电间隔△T很小。即使输入电压Vin过零,对VCP影响很小。因此与一般直接对Vin整流后滤波相比,交流纹波小得多,使得在相同功率下,滤波电容明显减小。

当主回路输入电压接近其包络峰值时,在功率管导通时间间隔t3~t5内的t4时刻,由于充电电压的升高,Vp已经达到其最大值,IC在此时刻停止流动,使It瞬时下跳,其值约等于IC的上跳值,参见图3所示。此时由于电感电流IL的作用使二极管D导通,IL直接给CP充电。在t4~t5期间,由于LP的作用,It再次继续上升;由于没有IC的反向分流作用,It上升斜率略低于t3~t4时刻。在t5时刻,功率管关闭,其后波形变化规律同于t2时刻。这一变化规律与前者不同之处有2点:

(1)It出现2次峰值,t4时刻峰值电流为It(t4)=Ip(t4)一IC(t4)>IP(t4),式中I4(t4)为负值(见图3),另一个峰值为IL(t5)=IP(t5)。

(2)在此期间,IL不再每个周期归零,即进入阶段性连续电流状态,这种状态只有在Vin幅度较大时发生。

值得一提的是,该电路中的电感线圈L即使饱和,也不会形成大的充电电流,这主要是由于电容器C对充电电流有限制作用的原因,而且VCP一般都高于输入电压Vin峰值,有效地限制了整流桥的冲激电流,从而也提高了电路的可靠性。

3 电路设计

图4给出了一个实际电路。该电路使用Infineon公司最新推出的TDAl6846芯片。设计的电源电路具有"电荷泵"完成的APFC功能,其工作原理同于前述。电路输入电压在220 V±15%范围,功率可在300 W以下,具有待机省电功能,可广泛地应用于彩电、监视器等设备的开关电源。该电路在设计方面具有如下优点:

(1)无需专门的启动电路

TDA16846的起动过程特殊,他没有单独的启动电路,而是通过芯片内部与二脚相连的启动二极管来启动。其电路图如图5所示。

刚接通电源时,芯片14脚电位低于启动电压,芯片不工作,电路亦不工作。此时,主回路电压通过R2,芯片2脚及内部二极管D1对C14充电。当V14达到启动电压时,使内部SVC电路供电,芯片启动,电路开始工作,辅助电源绕组通过D8开始供电,完成启动过程。所以他不需要附加启动电阻,结构简单,而且降低了能耗。

(2)功率管不需要串接电流检测电阻RS在由TDA16846组成的开关电源电路中并没有直接的电流检测电路,但该芯片可以实时检测电流。他是通过2脚的电阻R2和电容C2来实现的,参见图5所示。

当功率管关断时(有某些电路保护而带来的关断除外),2脚的电压被限制在1.5 V上,功率管导通时主线电压通过R2对C2充电。当电压超过允许值时功率管被关断,随后该脚电压又被限制在l.5 V上。由于C2充电时间与三极管的导通时间一致,所以C2上所充得的电压V2就与三极管的电流有对应关系。其关系满足[3]:

其中:LP,IP参见图2所示。

由于V2可达的最大值为5 V,所以由式(4)可求得功率管所达到的最大电流为:

从而可省去电流检测电阻RS,利用式(5)还可以计算出所能达到的最大功率。

4 实验与结论

根据科研需要,设计了如图4的高功率因数电源,输出功率为300 w,两组输出电压分别为30 V(8 A)和12 V(5 A)。输入、输出相互隔离,所使用元器件及其具体参数如图4所示。由于采用了电荷泵APFC校正电路,功率因数可达O.95左右,实测波形如图6所示。


图中曲线a表示输入交流电压波形(每格100 V),曲线b表示其电流波形(每格2 A)。通过对两者比较可以明显看出,由于电荷泵的作用,电流波形基本和输入电压波形一致。因此,采用电荷泵的方法所设计的开关电源,可以简单而有效地实现APFC功能,具有很大的实用价值。

关键字:TDAI6864  新型有源功率  校正电路 编辑:冰封 引用地址:一种基于TDAl6846的新型有源功率校正电路设计

上一篇:低成本电容式触摸感应设计
下一篇:一种采用FAN7710V控制IC的低成本高性能节能灯镇流器

推荐阅读最新更新时间:2023-10-18 16:12

单相Boost型功率因数校正电路软开关技术综述
O 引言   近二十年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。多数电力电子装置通过整流器与电力网接口,经典的整流器是一个由二极管或晶闸管组成的非线性电路,它会在电网中产生大量电流谐波和无功功率,污染电网,成为电力公害。在20世纪80年代中后期,开关电源有源功率因数校正技术引起了国内外许多学者的重视,进行了许多专题研究并取得了大量成果。   有源功率因数校正技术在整流器与滤波电容之间增加一个DC/DC开关变换器。在各种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。高频化可以减小有源功率因数校正电路的体积
[应用]
NCP1650型功率因数校正器的应用及电路设计
摘要:首先介绍了NCP1650型功率因数校正集成电路的典型应用,然后重点阐述其电路设计及外部功能扩展方法。关键词:功率因数校正器;应用;电路设计;扩展Application andCircuitDesignofNCP1650PowerFactorCorrectorSHAZhanyou,WANGYan peng,WANGXiaojunAbstract:AtfirstthetypicalapplicationofNCP1650type powerfactorcorrectionICisintrodued.Thenitscircuitdesignandtheexternal functionexpansionmethodareex
[电源管理]
采用UC3854的有源功率因数校正电路工作原理与应用
  一. 功率因数校正原理   1.功率因数(PF)的定义 功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。所以功率因数可以定义为输入电流失真系数()与相移因数()的乘积。   可见功率因数(PF)由电流失真系数()和基波电压、基波电流相移因数()决定。低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。同时,值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,对三相四线制供电,还会造成中线电位偏移,致使用电电器设备损坏。   由于常规整流装置常使用非线性器件(如可控硅、二极管),整流器件的导通角小于180o,从而产生大量谐波电流成份,而谐波电
[电源管理]
采用UC3854的<font color='red'>有源</font><font color='red'>功率</font>因数<font color='red'>校正</font><font color='red'>电路</font>工作原理与应用
无源无损软开关功率因数校正电路的研制
   1 引言   在开关电源中引入功率因数校正PFC(Power FactorCorrection)技术,一方面使电源输入电流与输入电压波形同相,即使功率因数趋于1;另一方面使输入电流为正弦波,即使总谐波畸变值尽量小。目前工程应用中,传统有源功率因数校正电路主要有硬开关Boost校正、有源软开关校正、无源无损软开关校正以及新型无桥模式校正。其中,无源无损软开关功率因数校正电路所用元器件数量少,电路结构简单,电路工作稳定性好,开关管的电流应力小,效率较高,控制电路简单,成本较低。所以本设计采用无源无损软开关功率因数校正电路,图1为其电路原理图。    2 基于无源无损软开关PFC功率级电路设计   功率级电路采用无
[电源管理]
PI校正补偿电路
PI 校正补偿电路如图 所示,其传递函数为:   
[电源管理]
PI<font color='red'>校正</font>补偿<font color='red'>电路</font>
一种小功率单级功率因数校正电路
摘要:讨论一种单级功率因数校正电路的原理,并分析其实验结果。 关键词:单级功率因数   A Low Power Single- stage Converter to Improve Power Factor Abstract: The paper introduces the operating principle of a low power single- stage converter to improve power factor, analyses the result of experiment. Keywords:Single- stage Power factor 1引言
[电源管理]
一种小<font color='red'>功率</font>单级<font color='red'>功率</font>因数<font color='red'>校正</font><font color='red'>电路</font>
如何将CoolMOS应用于连续导通模式的图腾柱功率因数校正电路
1. 前言 功率因素校正为将电源的输入电流塑形为正弦波并与电源电压同步,最大化地从电源汲取实际功率。 在完美的 PFC 电路中,输入电压与电流之间为纯电阻关系,无任何输入电流谐波。 目前,升压拓扑是 PFC 最常见的拓扑。在效率和功率密度的表现上,必须要走向无桥型,才能进一步减少器件使用,减少功率器件数量与导通路径上的损耗。 在其中,图腾柱功率因素校正电路(totem-pole PFC)已证明为成功的拓扑结构,其控制法亦趋于成熟。 一般而言,超级结MOSFET(Super junction MOSFET)在图腾柱的应用,尤其是针对连续导通模式,效能将会大打折扣。原因是在控制能量的高频桥臂在切换过程中产生的硬切损耗与寄生二
[电源管理]
如何将CoolMOS应用于连续导通模式的图腾柱<font color='red'>功率</font>因数<font color='red'>校正</font><font color='red'>电路</font>
采用FAN4810的500W功率因数校正电路
   功率因数校正的工作原理   1功率因数的定义   功率因数(PF)是指交流输入有功功率(P)与输入视在功率(S)的比值。其可以用公式(1)表示。   (1)   式中,I1表示交流输入市电的基波电流有效值;Irms表示交流输入市电电流的有效值;γ=I1/Irms,表示交流输入市电电流的波形失真系数;cosφ表示交流输入市电的基波电压和基波电流的相移因数。   所以功率因数可以定义为交流输入市电电流的波形失真系数(g)与相移因数(cosφ)的乘积,即功率因数PF主要由两个因素决定:一是交流输入市电的基波电流与基波电压的相位差φ;另一个是交流输入市电电流的波形失真因数γ。而传统的功率因数概念是在电阻
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved