浅谈一些误导用户的UPS指标或功能(二)

最新更新时间:2012-01-07来源: 互联网关键字:误导  ups 手机看文章 扫描二维码
随时随地手机看文章
五、 效率问题

            UPS效率是指UPS的输出有功功率和输入有功功率的比值。其实就是指UPS自身的能量损耗,比如:UPS会发热,这个就是能量损失,风扇散热,这部分的消耗也是能量损失。因为UPS是电源转换设备,内部有2级转换,交流到直流(整流转换)、直流到交流(逆变转换),这两级转换都是不可能达到100%的能量转换,都是有能量损耗的。

             效率可以达到96%或更高值的UPS,其可信度值得推敲。若达到96%的效率,则UPS的逆变效率和整流效率要分别达到差不多98%(0.98*0.98≈0.96),就目前UPS的技术来讲,恐怕还没有哪个厂家能达到。

           实际使用起来,能真正节能的,还是应该注重低负载时的效率能达到多少。因为很多UPS的带载率一般在50%左右,有的甚至更低,此时也能有高的效率,才能真正为我们节省电费。很多UPS在低负载时效率是比较低的,而台达HIFT UPS在30%负载时,就可达差不多满载时的效率。

          另外,UPS还有一个效率指标指标:经济模式(ECO)的效率。经济模式是市电比较正常的时候,UPS由旁路直接给负载供电,逆变器不输出。当市电中断或异常时,UPS才逆变输出,此时逆变器才工作。所以此模式时,相当于市电直接输出,故效率较高。 台达HIFT UPS在此模式时,效率也可达98%以上。

    六、 模块休眠唤醒功能问题

         模块休眠技术,主要是通信运营商提出的一个功能。因为前面提到的很多UPS在低负载时效率比较低,所有运营商提出希望在低负载时,关闭一定数量的模块,让UPS达到较高的负载量,从而提高UPS的效率。

          对HIFT UPS来讲,由于其在低负载时效率已经可到达几乎满足时的效率。另外,休眠功能,还存在一些问题:一个是休眠后能否及时唤醒的问题,若不能及时唤醒,那么可能出现过载保护的情况。其次是,唤醒后,能否立即投入承担负载。这一般是需要一段时间的。另外,模块休眠,到底是否能节能呢?到底如何才能算休眠呢?是关闭还是不关闭,关闭就意味着不能及时投入工作;不关闭,其耗能情况怎样?

    七、 内置同步控制技术问题

            同步控制是为双母线供电系统提供的一个功能。在双母线供电时,某些情况需两条母线的输出需相位同步。一些厂家的解决办法是需客户另外购买其外置的同步控制器,而台达HIFT UPS标配内置了此功能,无需再购买。另外,UPS内置此功能,还避免了外置硬件同步控制器的单点故障的问题。

    八、 共享电池组问题

         电池组共享是指多个模块或多个机架共用一组或多组电池。这样带来的好处是电池组利用率大大提高。因为我们发现,当UPS模块或机架故障时,其自带的电池组也因为UPS的故障而不能使用(即使电池是正常的),这样整个的后备时间就会缩短。而采用电池组共用的方式,则不存在此问题。

关键字:误导  ups 编辑:冰封 引用地址:浅谈一些误导用户的UPS指标或功能(二)

上一篇:浅谈一些误导用户的UPS指标或功能(一)
下一篇:高频开关电源控制方案设计

推荐阅读最新更新时间:2023-10-18 16:18

不间断电源UPS中IGBT的应用
绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。    1、IGBT在UPS中的应用情况   绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。据东芝公司资料,1200V/100A的IGBT的导通电阻是同一耐压规格的功率MOSFET的1/10,而开关时间是同规格GTR的1/10。由于这些优点,IGBT广泛应用于不间断电源系统(UPS)的设计中。这种使用
[电源管理]
介绍UPS电源常用电池的分类
  在 UPS 电源应用中常用的电池共有三种:包括开放型液体铅酸电池,免维护电池,镍铬电池,影响电池寿命的因素,不同种类电池也有各自的优点和缺点。现UPS厂家所配的电池一般为免维护电池,下面以免维护电池为主介绍三种电池的特点:   1:开放型液体铅酸电池   此类电池按结构可分为8-10年,15-20年寿命两种。由于此电池硫酸电解会产生腐蚀性气体,此类电池必须安装在通风并远离精密电子设备的房间,且电池房应铺设防腐蚀瓷砖。   由于蒸发的原因,开放电池需定期测量比重,加酸加水。此电池可忍受高温高压和深放电。电池房应禁烟并用开放型电池架。   此电池充电后不能运输,因而必须在现场安装后充电初充电一般需55-90小时。正常每节电压为2V
[电源管理]
UPS电源蓄电池解决方案
(1) UPS 配用: 铅酸蓄电池 由于价廉而且容量可以做得很大,在UPS的配置中几乎全为全密封免维护铅酸蓄电池。UPS以蓄电池配置时间长短的方式分为标机(5-15分钟),和长延时机系统(0.5-24小时)。UPS标机配置的蓄电池5-15分钟就放完电,放电电流倍率很大(3C-4C),这就要求UPS标机配置的蓄电池非常强调必须具有很强的高倍率大电流放电性能。这就要求蓄电池正板必须是大电流放电性能较佳的多元母合金板栅(如Pb-Al-Sb),只有这种极板的蓄电池才能保证其UPS标机的配置中具有较长的使用寿命。普通的铅钙型蓄电池配用于UPS的标机中寿命较短,一般是厂商承诺保用一年。长延时UPS配置的蓄电池使用条件相对优越,
[电源管理]
不间断电源UPS中IGBT的应用
绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。    1、IGBT在UPS中的应用情况   绝缘栅双极型晶体管(IGBT)是一种MOSFET与双极晶体管复合的器件。它既有功率MOSFET易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。据东芝公司资料,1200V/100A的IGBT的导通电阻是同一耐压规格的功率MOSFET的1/10,而开关时间是同规格GTR的1/10。由于这些优点,IGBT广泛应用于不间断电源系统(UPS)的设计中。这种使用
[电源管理]
采用IGBT设计UPS的技术方案
在UPS 中使用的功率器件有双极型功率晶体管、功率MOSFET、可控硅和IGBT,IGBT 既有功率MOSFET易于驱动、控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大的优点、使用IGBT 成为UPS 功率设计的首选,只有对IGBT的特性充分了解和对电路进行可靠性设计,才能发挥IGBT 的优点。本文介绍UPS中的IGBT 的应用情况和使用中的注意事项。IGBT在UPS中的应用情况         绝缘栅双极型晶体管IGBT是一种MOSFET 与双极晶体管复合的器件。它既有功率MOSFET易于驱动、控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大,损耗小的显著优点。据东芝公司资料,1200
[嵌入式]
易事特高品质UPS助力东方有线打造绿色数据中心
  近日,易事特自主研发生产的高品质智能UPS电源以其高稳定性、高可靠性、高保障性的产品性能,成功中标上海东方有线网络有限公司机房电源设备采购项目,助力其打造绿色节能数据中心。   东方有线网络有限公司(原上海市有线网络有限公司,简称东方有线)经营着全上海数百万户有线电视网,拥有宽带、光纤、用户等资源优势和规模运营的实力,已发展成为集有线电视、家庭宽带、互动电视、数据传输、系统集成等于一体的综合信息服务提供商。随着交互电视服务的推出,浦东东方有线将打造一个以交互机顶盒连接电视机为核心用户端界面的“数字家庭综合信息服务平台”,为广大用户创造一步到位的多彩生活。   随着基础设施的不断完善与服务内容的逐步丰富,东方有
[新能源]
完全冗余双路UPS组成的双母线解决方案
IDC等数据中心随着业务的飞速发展,对业务的重要性和可用性要求逐渐提高,过去对供电系统的可用性要求为99.9%~99.999%,采用的方案为单机UPS工作,或串联UPS工作,或N+1并联工作。99.9%~99.999%的可用性,年平均的不可用时间为8.76小时~5.3分钟,显然这种故障时间不能达到当前IDC等数据中心的要求。为了提高数据中心的可用性,必须提升UPS供电的可靠性,彻底提高UPS供电系统的可用性。在UPS单机供电方案,或UPS串联方案,或UPS并机方案中,均存在输出单点故障瓶颈问题。 美国IDC的研究表明,在UPS供电中,影响供电可靠性的最大因数在于输出的配电系统,包括 开关 跳闸、保险烧毁、 电路 短路等供电回
[电源管理]
UPS应用中的误区及过电压防护
本文结合实际,针对UPS应用当中的过电压防护需求,提出适当的解决方案。    1.过电压防护概念的变化   当远处发生雷击时,雷电浪涌通过电网或通讯线路传输到设备端,虽然不一定立即损毁设备,也会对设备内部造成累计性损害。另外,随着经济的快速发展,设备遭受来自线路上的其它浪涌干扰(例如各种动力设备启动运行时对电网所带来的操作过电压现象)的可能性也很高,其对设备的影响可能更大。   因此,再简单直观地认定“没有雷电就不需要过电压防护”,显然是不正确的。可以说,目前的过电压防护工作已经由传统的防雷转向直击雷、雷电电磁脉冲、地电位反击和操作过电压的综合防护。    2.UPS应用中的“防雷”误区   
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved