通过PCB分层堆叠设计控制EMI辐射

最新更新时间:2012-01-17来源: 互联网关键字:分层堆叠  EMI  辐射 手机看文章 扫描二维码
随时随地手机看文章

  解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。

  电源汇流排

  在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。

  我们应该怎麽解决这些问题?

  就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

  

  当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

  为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。

  上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在100到300ps范围的器件将占有很高的比例。对於100到 300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小於1mil的分层技术,并用介电常数很高的材料代替FR4介电材料。

  现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

  尽管未来可能会采用新材料和新方法,但对於今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

  电磁屏蔽

  从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

  PCB堆叠

  什麽样的堆叠策略有助於屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍後讨论。

  4层板

  4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

  如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用於板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

  

  第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从EMI控制的角度看,这是现有的最佳4层PCB结构。

  第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间阻抗和传统的4层板一样欠佳。如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

  6层板

  如果4层板上的元件密度比较大,则最好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

  

  第一例将电源和地分别放在第2和第5层,由於电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

  第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由於第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外层上的信号线数量最少,走线长度很短(短於信号最高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将覆铜区接地 (每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

  解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。

  电源汇流排

  在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。

  我们应该怎麽解决这些问题?

  就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

  

  当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

  为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。

  上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在100到300ps范围的器件将占有很高的比例。对於100到 300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小於1mil的分层技术,并用介电常数很高的材料代替FR4介电材料。

  现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

  尽管未来可能会采用新材料和新方法,但对於今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

  电磁屏蔽

  从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

  PCB堆叠

  什麽样的堆叠策略有助於屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍後讨论。

  4层板

  4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

  如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用於板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

  

  第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从EMI控制的角度看,这是现有的最佳4层PCB结构。

  第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间阻抗和传统的4层板一样欠佳。如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

  6层板

  如果4层板上的元件密度比较大,则最好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

  

  第一例将电源和地分别放在第2和第5层,由於电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

  第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由於第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外层上的信号线数量最少,走线长度很短(短於信号最高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将覆铜区接地 (每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

  通用高性能6层板设计一般将第1和第6层布为地层,第3和第4层走电源和地。由於在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是优异的。该设计的缺点在於走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。

  

  另一种6层板布局为信号、地、信号、电源、地、信号,这可实现高级信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。

  这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜後如果第3层的覆铜密度接近於电源层或接地层,这块板可以不严格地算作是结构平衡的电路板。填铜区必须接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。

  10层板

  由於多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到优异的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工的制造商也不多。

  由於信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非最佳。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。

  

  这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是最後一对分层组合。当需要改变走线方向时,第1层上的信号线应藉由“过孔"到第3层以後再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。

  当信号的走线方向变化时,应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合最紧。例如,如果信号在第1 层上走线,回路在第2层且只在第2层上走线,那麽第1层上的信号即使是藉由“过孔"转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。

  

  如果实际走线不是这样,怎麽办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到最近的接地过孔(如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。

  当信号线必须经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对於第4层和第7层分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。

  

  多电源层的设计

  如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。

  如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。

  鉴於大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关於电路板分层和堆叠的讨论都局限於此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。

  电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是必不可少的。

关键字:分层堆叠  EMI  辐射 编辑:探路者 引用地址:通过PCB分层堆叠设计控制EMI辐射

上一篇:板载电源模块—开放式与封闭式的选择
下一篇:级联型逆变器相移PWM的相移量与输出谐波关系分析

推荐阅读最新更新时间:2023-10-18 16:22

当RF遇到模拟信号和数字信号–EMI测试
当前,对工程师们来说,EMI (电磁干扰)和EMC (电磁兼容性)即使不算灾难,也算是非常棘手的任务。这是因为如果没适当的工具,找到略微超出极限的、讨厌的EMI辐射的来源可能会非常麻烦,这种EMI辐射可能会横跨RF信号、模拟信号和数字信号。   当前的设计正变得越来越强大、越来越复杂、越来越小。越来越多的功能被塞进越来越小的封装中,即使本身没有无线功能,设计中仍存在着大量的组件,每个组件都会发出某类电磁能量(或RF噪声),可能会干扰设计中某些其它东西。正因如此,业内制订了EMC规则和法规,具体规定任何给定设计允许传播多少电磁能量、允许传播哪种电磁能量。但在满足这些目标之前,设计人员必需确认自己的设计“本身没有问题”。
[模拟电子]
当RF遇到模拟信号和数字信号–<font color='red'>EMI</font>测试
Maxim有源辐射限制(AEL)电路
本应用笔记探讨Maxim的第三代D类音频功放技术,能够在消费电子产品中实现“无滤波”工作。确切地说,本文说明了Maxim的新一代、正在申请专利的有源辐射抑制电路,能够在不降低音频性能的情况下把辐射降至最小。 Maxim第二代D类音频功率放大器的特征是利用了独特的、拥有专利的扩谱调制,在较宽频带内展宽频谱分量,从而改善扬声器和电缆辐射EMI。Maxim的第三代D类音频功率放大器采用了相同的扩谱调制技术,并在这项技术的基础上增加了一项新的、正在申请专利的有源辐射抑制电路(AEL),在不降低音频性能的情况下进一步降低窄带频谱分量。这两项专有技术的有机结合,使得Maxim的D类音频功率放大器(如MAX9705)能够在“无滤波”工作条件
[模拟电子]
buck稳压器如何降低电磁干扰和节省电路板空间
保证高效和紧凑的设计同时遵守国际无线电干扰特别委员会 (CISPR) 等组织提出的严格电磁干扰 (EMI) 要求是一项挑战。因此,元件的选择成为了设计过程的关键。与大多数设计决策一样,在不同组件之间进行选择几乎总是归结为基于您最关键设计目标的权衡评估。以高效及良好的热性能著称的buck稳压器,通常不被视为降低电磁干扰候选项。幸运的是,您有多种选择来降低此类稳压器产生的EMI。幸运的是,仍然有多种措施用以减少这类稳压器所带来的电磁干扰。图1为buck稳压器的示意图。 图1. Buck稳压器示意图 电路板布局注意事项 当设计必须符合EMI要求时,除了选择适当的无源元件值以确保功能设计之外,电路板布局应该是进行设计时
[电源管理]
buck稳压器如何降低电磁干扰和节省电路板空间
手机中ESD和EMI干扰及其解决方案
这篇文章简要地探讨了手机音频系统中ESD及EMI的起因及结果。接着研讨了ESD干扰抑制器和EMI滤波器的使用,以避免这些威胁。最后,比较了当前三种解决方案。   现代材料和技术引起静电放电(ESD)和电磁干扰(EMI),并成为经常存在的危险。我们的穿着和我们接触的物品会引起静电放电。数字技术已有电磁干扰。静电放电会破坏手机里的电子部件。手机容易替换,但对用户的伤害很大。手机电路设计者必须确保采取必要的措施,以消除ESD的破坏。   在音频电路中如有电磁干扰(EMI),会出现嘶嘶、噼啪、嗡嗡等声音,声音质量很差。手机用户无法忍受这样的干扰。因此,必须设法过滤音频电路的电磁干扰。    静电放电——起因、结果和抑
[电源管理]
芬兰研发出低辐射三维CT扫描仪
  赫尔辛基11月26日电芬兰医学影像设备商普兰梅德公司新近推出一款适用于骨科的可移动三维CT扫描仪,这款扫描仪辐射剂量低,具有生成高清晰度三维X射线图像的功能。   与传统CT扫描仪相比,新型CT扫描仪所使用的辐射剂量仅为传统CT扫描仪的十分之一,能大幅减少对患者的有害辐射,而且成像快。另外,这款扫描仪还可与医院的信息系统结合,将患者的数据和图像快速存档。   据报道,新型扫描仪的紧凑设计使其具备可移动性,其成像孔专为四肢设计,便于为坐在轮椅上、躺在床上或担架上的患者进行扫描检测。另外,扫描仪所生成的三维图像可清晰地显示出检查部位的多平面结构,对于骨科手术、运动损伤和骨关节疾病等诊断具有重要作用。   这款新型扫描仪
[医疗电子]
工程师该如何获得射频仪器的最大功效
概览 现代 射频 仪器 具有远远超过其前代产品的令人印象深刻的测量能力和精度。然而,如果不能提供高品质的信号,这些仪器就不能充分发挥其潜能。完备的测量方法和注意事项可以保证您能够充分获取在射频仪器上投资的收益。 获得可靠的 射频测量 射频测量通常在理论上很简单,但付诸实施的时候却困难重重。您能够很容易地从当代射频仪器所提供的广泛测量手段中获得核心的射频测量结果,例如功率,频率和噪声。但是,获得结果与获得正确结果则有着天壤之别。通过在您的整个射频测量过程中执行最优方法,您可以确保一个可靠、精确并且可重复的结果。 理解专业术语 例如精度、可重复性、分辨率和不确定性这些专业术语经
[测试测量]
功率转换拓朴架构及EMI噪声
所有的 电子 设备都是以直流电供电的,通常是经过 AC 整流。再由 DC-DC 转换器转压,转到负载所需的 电压 。目前,大部份的 DC-DC 转换器己普遍以高频率的开关技术为基础,有效的高频率开关一直被视为模块功率密度大小,性能表现优劣的关键。开关频率愈高,所用的磁性元件和 电容 愈小,反应时间更快,噪声更低,所需滤波器较细小。 但是所有的 DC-DC 转换器还是会产生电磁干扰 (EMI) 或者噪声的,而所产生的噪声水平,不论是共模的,差模的或者是辐射噪声,会因为不同的生产厂,或者是采用不同的转换技术而产生很大的差异,这些差别的根源在于这些噪声是如何产生的。 虽然没有一种功率转换拓朴结构是完美的,但有些拓朴结
[电源管理]
功率转换拓朴架构及<font color='red'>EMI</font>噪声
直流电机辐射不合格,有哪些整改方案可以加?
如果直流电机的辐射不合格,以下是一些整改方案可以考虑: 使用屏蔽材料:在电机内部使用屏蔽材料来减少辐射电磁场的传播。屏蔽材料可以包括电磁屏蔽罩、金属壳体或屏蔽套等。 设计地线和接地:确保电机的地线布局合理,使用低阻抗地线和良好的接地,以提供辐射电磁场的引流路径。 优化电机结构:重新设计电机结构,例如增加绝缘层、改进导线布局等,以减少辐射噪声的产生。 采用滤波器:在电机输入和输出线路上添加滤波器,以抑制辐射噪声的传播。滤波器可以减少高频噪声和电磁干扰信号。 重新设计电路:对电机的电路进行重新设计,采用抑制噪声的技术,例如差模驱动电路、共模噪声滤除电路等。 使用磁屏蔽材料:使用磁屏蔽材料来减少电机磁场的辐射。磁屏蔽材料可以放置在电机
[嵌入式]
直流电机<font color='red'>辐射</font>不合格,有哪些整改方案可以加?
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved