一种推挽式Boost DC/DC 变换器的研究

最新更新时间:2012-05-27来源: 21IC关键字:变换器  DC/DC  Boost 手机看文章 扫描二维码
随时随地手机看文章

  电力电子技术是研究电能变换原理与变换装置的综合性学科,是电力行业中广泛运用的电子技术。电力电子技术研究的内容非常广泛,包括电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由上述元件、电路组成的电力变换装置,其中电力变换技术是开关电源的基础和核心。由于生产技术的不断发展,双向DC /DC 变换器的应用也越来越广泛,主要有直流不停电电源系统( DC-UPS) 、航空电源系统、电动汽车等车载电源系统、直流功率放大器以及蓄电池储能等应用场合。而双向DC /DC 变换器中,升压变换和降压变换是双向DC /DC 变换器中两个组成部分,在DC /DC 升压式电路中,通常采用的拓扑结构有Boost、Buck、Boost 和推挽三种。而当输入电压比较低,功率不太大的情况下,一般优先采用推挽结构。本文着重介绍一种推挽式Boost DC /DC 变换器,对其工作原理进行分析并对这种变换器进行建模及仿真。

  1 推挽式Boost DC/DC 变换电路工作原理

  推挽式Boost DC /DC 变换器的拓扑结构,如图1所示,前面一级升压电路可以看作是一个Boost 升压电路,通过调整开关管S1的占空比来调节变压器原边输入电压; 后面一级升压电路是一个推挽式变换电路,也可以看作是由两个正激式变换器组合来实现的,该变换器是由一个具有中心抽头的变压器和两只开关管S2、S3构成的。这两个正激式变换器在工作过程中相位相反,在一个完整的周期中交替把能量传递给负载,所以称为推挽式变换。

图1 推挽式Boost DC/DC 变换器

  功率开关管S1、S2、S3的发射极直接连接在电源负极,因此该变换器的驱动电路继承了一般推挽式变换电路的优点: 基极驱动十分方便、简单,不需要进行电气隔离就可以直接驱动。该拓扑结构具有结构紧凑、驱动电路简单以及升压效果明显等优点。

  升压变换时其具体的工作过程如图2 所示,高压侧开关管的驱动信号被封锁。功率开关管S1和升压电感L1构成的Boost 电路将电源电压初次升高到一定的电压值; S2和S3驱动信号的占空比均为50 %,构成的推挽变换电路将升高后的直流电压变换成交流电压,通过高频变压器传送到副边,并将电压进一步升高,利用反向电路中的开关管的反并二极管进行整流。

  在任一时刻,电流仅仅流过一个开关器件,这大大降低了变换器的通态损耗,同时提高了变换器的效率、缩小了变换器的体积。

  开关管S1、S2、S3的驱动信号,以及开关管所承受的电压波形、电感L1中的电流波形,如图2 所示。

图2 升压变换时开关管上的电压、电感中的电流和变压器副边电压波形

  在分析之前,假设所有的开关器件和整流二极管器件均为理想器件,变压器为理想变压器,电感L1足够大,能够保证流过它的电流的连续性。其中电容C2是为了防止电流偏磁的。

  各开关状态如下:

  ( 1) t0 ~ t1阶段

  t0时刻,S1导通,低压侧直流电压加在L1的两端,电感中的电流线性增长。此期间电源对电感充电,储存能量,为了能够保证电流的连续性,要求电感L1要足够大。这期间虽然开关管S2有触发信号,但是开关管S1的导通对L2回路形成短路,加在变压器原边的电压为零,变压器副边输出电压也为零。

  ( 2) t1 ~ t2阶段

  t1时刻,S1关断,S2承受正向电压导通,L1中的电流将通过开关管S2流经变压器,此时变换器对负载供电,L1中的电流线性下降。

  ( 3) t2 ~ t3阶段

  t2时刻,S1再次导通,工作过程同t0 ~ t1阶段。

  ( 4) t3 ~ t4阶段

  t3时刻,S1关断,S3承受正向电压导通,L1中的电流将通过开关管S3流经变压器,此时变压器对负载供电,L1中的电流线性下降。

  通过分析得到如下结论: 该电路采用Boost 升压电路和推挽式升压电路两种升压电路相结合的方式对输入电压进行升压,大大地提升了升压的整体效率。但是其主要缺点是: 电路主体部分仍然采用硬开关电路,造成的开关损耗也比较大,变换器的工作效率受到一定的限制。因此有必要对变换电路进行改进,可以将串联谐振软开关技术[4,5]引入到推挽式Boost 变换器中。

  2 建模与仿真

  为了验证上述分析,下面应用PSPICE 电路仿真软件对这种推挽式Boost DC /DC 变换电路进行建模仿真,观察其仿真波形。

  ( 1) 图3 给出了升压变换电路的主电路的仿真图,其仿真主要参数如下:

  输入直流电压: Uin = 28 VDC; 输出直流电压: Uo= 270 VDC; 变压器原、副边匝比: n = 5; 升压电感: L4= 200 μH; 输出滤波电容: C1 = 200 μF; 开关管:

  IRF460; 功率二极管: MUR460。


 ( 2) 功率开关管的驱动信号设置

 

  首先在Pspice 的Schematic 中绘制如图3 所示的电路原理图,选用暂态分析,在给定输入激励信号的作用下,调用PspiceA/D 程序进行电路的模拟仿真。

图3 升压变换电路的主电路仿真图

  三个开关管的驱动信号如表1所示进行设置。

  此仿真开关管的驱动信号采用脉冲信号激励源VPULSE,其主要有7 个参数设置。

  升压开关管的开关频率为推挽管开关频率的两倍,推挽管的开关周期为25 μs。

表1 开关管驱动脉冲信号设置表

  ( 3) 仿真结果及分析

  图4 为升压变换电路中升压开关管和推挽开关管的驱动波形。S1为升压开关管,S2和S3为推挽功率开关管。图中S2和S3为推挽开关管的驱动波形,占空比为50 %,为两个互为180°的方波。

图4 升压开关管S1和推挽管S2、S3的驱动波形

  图5 为变换器升压开关管的驱动波形及其升压电感中的电流波形。从图中可知,当升压开关管S1导通,低压侧的直流电压Uin加在升压电感L5的两端,所以电感中的电流线性上升,此时直流电压源对电感充电来存储能量。此时虽然推挽开关管S2驱动导通,但是S1的导通对S2的回路形成短路,加在变压器原边的电压为零。当开关管S1关断时,升压电感L5中的电流将通过开关管S2流经变压器对负载供电,此时L5中电流线性下降,依次循环。

图5 开关管S1的驱动波形及升压电感中的电流波形

  图6 为升压开关管S1和推挽开关管S2漏源极之间的电压波形。从图中可以看出开关管漏源极之间电压有少量振荡,这是由于变压器中存在有漏感而引起的电压峰值,这个电压峰值直接加在关断的开关管两端。

图6 S1和S2漏源极之间的电压波形

  3 结束语

  通过上述仿真分析,这种新型的采用Boost 升压和推挽式升压相结合的升压方式,大大地提高了升压效率,但缺点是仍然采用硬开关,这样一来变换器的体积大,二是有一定的开关损耗,下一步的研究即在此基础上引入软开关技术。

关键字:变换器  DC/DC  Boost 编辑:探路者 引用地址:一种推挽式Boost DC/DC 变换器的研究

上一篇:基于MC9S12DT128B的电池数据采集系统设计
下一篇:基于Buck电路的开关电源纹波的计算和抑制

推荐阅读最新更新时间:2023-10-18 16:47

详述ADC精度和分辨率的概念差异
在与使用模数转换器 (ADC) 的系统设计人员进行交谈时,我最常听到的一个问题就是: 你的16位ADC的精度也是16位的吗? 这个问题的答案取决于对分辨率和精度概念的基本理解。尽管是两个完全不同的概念,这两个数据项经常被搞混和交换使用。 该文详述了这两个概念间的差异,并将深入研究造成ADC不准确的主要原因。 ADC的分辨率被定义为输入信号值的最小变化,这个最小数值变化会改变数字输出值的一个数值。对于一个理想ADC来说,传递函数是一个步宽等于分辨率的阶梯。然而,在具有较高分辨率的系统中( 16位),传输函数的响应将相对于理想响应有一个较大的偏离。这是因为ADC以及驱动器电路导致的噪声会降低ADC的分辨率。
[电源管理]
详述A<font color='red'>DC</font>精度和分辨率的概念差异
【ARM】ADC·FS2410数模转换
开发环境 1、硬件平台:FS2410 2、主机:Ubuntu 12.04 ADC寄存器配置 1、初始化ADC(ADCCON) 设置预分频,预分频因子,选择A/D转换通道,并选择正常模式且启动转换 2、判断转换是否结束(ADCCON ) 3、读取转换结果(ADCDATn) 串口的初始化 见《串口通信·FS2410》: http://infohacker.blog.51cto.com/6751239/1223137 源代码 //adc.c #include 2410addr.h //头文件,包含寄存器的设置 void putc(char ch)
[单片机]
【ARM】A<font color='red'>DC</font>·FS2410数模转换
基于ADC和FPGA脉冲信号测量设计
  0引言   测频和测脉宽现在有多种方法。通常基于MCU的信号参数测量,由于其MCU工作频率很低,所以能够达到的精度也比较低,而基于AD10200和FPGA的时域测量精度往往可达10 ns,频率测量精度在100 kHz以内。适应信号的脉宽范围在100 ns~1 ms之间;重复周期在0.05~100ms:频率在0.1 Hz~50 MHz。   AD10200是高速采样芯片,其中内嵌变压器,因此采样电路外部不再需要变压器,使得电路设计更为简单;最低采样速率为105 MSPS,具有3.3 V或者5 V CMOS兼容输出电平,双通道12位采样,补码形式输出,每个通道功耗为0.850W。通常可应用于雷达中频信号接收机、相位组接
[测试测量]
基于A<font color='red'>DC</font>和FPGA脉冲信号测量设计
一种推挽式Boost DC/DC变换器的研究
随着电力电子技术的迅速发展,双向DC / DC变换器的应用日益广泛。文章提出在双向DC/DC变换器中用到的一种推挽式Boost DC/DC变换器 ,全面分析这种变换器的工作原理并阐述其缺点,利用PSPICE仿真软件对其进行建模仿真。 0 引言 电力电子技术是研究电能变换原理与变换装置的综合性学科,是电力行业中广泛运用的电子技术。电力电子技术研究的内容非常广泛,包括电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由上述元件、电路组成的电力变换装置,其中电力变换技术是开关电源的基础和核心。由于生产技术的不断发展,双向DC/DC变换器的应用也越来越广泛,主要有直流不停电电源系统(DC-UPS)、航空电源系统、
[电源管理]
一种推挽式<font color='red'>Boost</font> <font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>的研究
IDC:1~3季全球前十大智能机组装排名
    根据市场研究机构 IDC 全球硬体组装研究团队从供应链调查的最新研究结果显示,由于传统旺季来到、经济成长力道趋缓,2015年第三季全球智慧型手机产业制造量相对2015年第二季成长6.9%,略低于原先预期。全球前十大智慧型手机组装排名则呈现中国大陆厂商回升、台商微幅滑落的局势。 全球硬体组装研究团队研究经理高鸿翔指出 : 2015年第三季全球前十大智慧型手机厂商组装排名当中,中国大陆智慧型手机厂商由于其主要客户中国大陆品牌厂商与新兴市场当地品牌积极发表新款迎接旺季,其排名明显回升;至于台湾智慧型手机组装厂,则受到苹果手机部分零件供应不顺畅、Sony出货规模持续下滑等影响,组装排名呈现微幅滑落的局势。 根据IDC全球
[手机便携]
STM32 ADC基础内容
ADC,Analog-to-Digital Converter(模数转换器),其应用非常广泛,比如温度、湿度、压力、声音等传感器领域。 ADC的类型很多,STM32内部集成的ADC为逐次逼近型。STM32虽然是通用MCU芯片,但它内部集成的ADC也非常出色,不比一些专用ADC芯片差。 1 STM32 ADC 基础内容 STM32内部集成的ADC与型号有关,有16位、12位ADC,内部集成ADC多达4个,通道数多达40个,甚至更多。 1. ADC分辨率 分辨率决定了ADC的转换精度,按理说分辨率越高越好,但价格更贵。 STM32内部集成的ADC最高16位,2的16次方,即65536的分辨率。只有少数STM32才集成16位分辨
[单片机]
STM32 A<font color='red'>DC</font>基础内容
次级控制的单端正激变换器
摘要:对比了初级控制的单端拓扑与次级控制的半桥拓扑的异同,给出了次级控制的单端正激变换器拓扑。并介绍了一个由初级启动控制器UCC3960实现的实际电路及其实验结果。 关键词:单端正激变换;初级控制;次级控制;启动控制器;脉冲边缘传输 引言 近几年来,随着电子及信息产业进一步向小型化、智能化发展,电源在这些产品中的地位越来越重要。开关电源以其体积小、重量轻、效率高得到了越来越广泛的应用。随着电子及信息产品性能指标的提高,与之配套的开关电源也出现了一些引人注目的变化。 新一代CPU,大规模集成电路中的逻辑电平越来越低,已从3.3V向2.5V,1.8V甚至1.5V,1.2V过渡,这就使传统的次级高频整流采用肖特基二极管方式的开关
[应用]
一种基于DWT-DCT变换强鲁棒性的数字水印算法
1 引言 网络技术的迅速发展使多媒体数据的传输更加容易,信息隐藏和版权保护成为迫切需要解决的问题,数字水印技术是保护数据的有效途径。不可见性和鲁棒性是数字水印系统两个最重要的特性。水印被嵌入在图像的一些重要系数中,其抗攻击的鲁棒性较好,但重要系数改变太多,则图像会产生严重失真。所以鲁棒性和不可见性是彼此矛盾的。水印技术可分为空域水印技术和变换域水印技术。空域水印算法鲁棒性差。变换域算法可使所嵌入水印信号的能量分散到空间的所有像素上,有利于保证水印的不可见性,同时鲁棒性强。离散余弦变换DCT(Discrete Cosine Transformation)算法易于在数字信号处理器中快速实现,离散余弦变换域图像水印与常用的图像
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved