由Dickson电荷泵理论可以推广得到产生负电压的电荷泵电路,负压电荷泵的工作原理如图1所示。其基本原理与Dickson电荷泵是一致的,但是利用电容两端电压差不会跳变的特性,当电路保持充、放电状态时,电容两端的电压差将保持恒定。在这种情况下将原来的高电位端接地,就可得到负电压的输出。该电路实际上是一个由基准、比较、转换和控制电路组成的系统。具体而言,它由振荡器、反相器及四个模拟开关组成,并外接两个电容C1、C2从而构成电荷泵电压反转电路。
图1 负压电荷泵的工作原理
振荡器输出的脉冲直接控制模拟开关S1及S2,此脉冲经反相器反相后控制模拟开关S3及S4。当模拟开关S1、S2闭合时,模拟开关S3、S4断开;模拟开关S3、S4闭合时,模拟开关S1、S2断开。
当模拟开关S1、S2闭合,模拟开关S3、S4断开时,输入的正电压+UIN向C1充电(上正下负),C1上的电压为+UIN;当模拟开关S3、S4闭合,模拟开关S1、S2断开时,C1向C2放电(上正下负),C2上充的电压为-UIN,即UOUT=-UIN。当振荡器以较高的频率不断控制模拟开关S1、S2及模拟开关S3、S4的闭合及断开时,在输出端可输出变换后的负电压(电压转换率可达99%左右)。
由如图1所示的原理图分析可知,当时钟信号为高电平时,模拟开关S1、S2同时导通,S3、S4同时关断,UIN对电容C1进行充电,Ucl+=UIN-Utp-Utn(Utp为开关S1的电压降,Utn为开关S2的电压降),Ucl-=Utn;当时钟信号为低电平时,S1、S2关断,S3、S4同时导通,C1上存储的电荷通过S3、S4传送到C2上,由于C2高电位端接地,故输出端电压为UOUT=-(UIN-Utp)。当考虑负载后,由于负载会从电路中抽取电流IOUT,负载上具有-IOUT[(C+Csn+Csp)fosc]大小的压降(Csn、Csp为开关极间电容),输出电压为式中,C1sn、C1sp为模拟开关S1,S2的开关电容;C2sn、C2sp,为模拟开关S3,S4的开关电容。
电荷泵使用电容储存能量。随着电荷泵电路结构的改进,它可应用在需要大电流的电路中。一般电荷泵电路主要有“LINEAR”和“SKIP”两种工作模式。
当电荷泵工作在“LINEAR”模式下,可以获得较低的输出纹波;工作在“SKIP”模式下可以获得较低的静态电流。为描述方便,以下分析中的电荷泵的四个开关管均用NMOS代替,而实际电荷泵电路中的开关管既有PM0S又有NM0S。电荷泵简单的工作过程可分为以下三个阶段。
阶段A(充电阶段,S1和S2导通):泵电容被UIN充电,C1(泵电容)两端的平均压差为UIN减去充电电流在S1和S2产生的压降。式中,Ucl为泵电容C1两端的平均压差;Rs1、Rs2为开关管S1,S2的开关电阻。
阶段B(能量传输阶段,S3和S4导通):泵电容向负载电容放电,其两极平均电压为阶段C(等待阶段,S1~S2均不导通):没有能量从UIN传输到C1和C2。Ucl=待状态,C1两端的电压保持恒定,这意味着C1的电容量在阶段A与阶段B相等。
当用50%占空比的时钟时,ΔtA=ΔtB=Δt(ΔtA,为阶段A的时间,ΔtB为阶段B的时间),所以C1的平均充电电流就等于其平均放电电流,假设阶段A和阶段B的时间常数足够大,则
并且
那么
开关S1~S2周期性通过阶段A、B和C翻转,能量就从电池UIN传输到负载(UOUT),能量转换波形如图2所示。在单个周期里,只有在阶段B才对负载电容C2充电,在其余阶段(阶段A和C),C2向负载放电。在死循环电路系统中,输出电压UOUT为稳定值,这就要求电荷泵充电能量等于负载消耗的能量。所以在能量传输的阶段B,输出电流Ip为
即
图2 能量转换波形
上一篇:高频开关稳压电源的基本构成
下一篇:电荷泵的功率损耗
推荐阅读最新更新时间:2023-10-17 15:05
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况