基于能量循环的电源节能方案

最新更新时间:2012-12-11来源: 电子发烧友关键字:电源转换器  转换效率  功率转换 手机看文章 扫描二维码
随时随地手机看文章

现代电子工业的发展促进了电源业的发展,任何电子设备都离不开各种精度的电源。电源转换器能将各种电压转换为用户需要的电压,比如:电力变压器能将输送的千伏高压交流电转换为正常使用的市电;各种充电机、以及工业和通信用供电模块,能将交流或直流电压转换为用户要求直流或交流电压,这种设备都是提供电能转换的电源转换器。相比较信号级的转换器电能转换器的功率要大得多,从几瓦到几十千瓦,他们的工作伴随巨大的能量转换。

在电源设备生产过程中,对电源设备进行例行测试老化是检验设备的必要环节,可以提高电源设备的可靠性,降低工厂的返工和担保成本。但由于设备老化同时也增加了生产的电力消耗成本。通常情况下,设备的例行老化是让设备接上模拟负载进行模拟工作,当然能量就消耗在模拟负载上,这种消耗通常没有得到最佳的利用。本文根据电源转换器是将电能转换为不同等级电能的特点,提出通过能量反馈实现大部分能量的循环利用,从而实现节能的目的。如何节能,减少能源消耗是人们一直追求的目标,在建设节约型社会的今天,节能降耗的意义更显重要。

工作原理

电源转换器能将电能加工为需要的电能,它的例行老化使用只要在电源转换器的输出端连接合适的电阻负载或等效阻抗的用电设备让其保证一定的负荷工作即可。如图1所示:输入电压Vin被电源转换器转换为Vout加在电阻负载上,在例行工作时,电源转换器消耗功率(未计算转换过程损耗)为Po="Vout2"/R1。

 

图1转换器工作示意图

这种情况下,电能消耗没有得到任何利用,就直接转化为热能从电阻负载上散发出去,是对电能的一种严重浪费。

要实现节能循环利用,主要考虑将消耗在电阻负载上的能量更加合理的利用。如果能将输出电压Vout再还原为输入电压Vin,则输出电能转换为输入的电能,便可以实现电能的循环利用,如图2所示:将原有转换器的电阻负载R1用等效输入阻抗的转换器2取代,转换器2的输出接转换器1的输入。则与R1等效输入阻抗的转换器2从转换器1输出端消耗的能量被转换到转换器1的输入端,再经转换器1又到转换器2的输入端,实现了能量的循环利用。如果在理想情况下,没有转换损耗,则系统可以自循环工作。当然这是无法实现的,所以在能量分析时,要引入转换过程的消耗。

 

图2转换器能量循环示意图

对以上两种工作模式下的能量消耗做如下分析:

第一种工作模式是在没有能量循环的情况下,Pi为转换器的输入能量,Pw为电源转换器转换过程中的消耗能量,Po为转换器消耗在电阻负载上的输出能量。假定转换器的转换效率为80%时,于是可设转换器在转换过程消耗的能量为Pw=25%Po,则整体总能量消耗也就是转换器的输入能量Pi=Po+Pw=1.25Po。

第二种工作模式是引入能量反馈的情况下,能量转换如图3所示:转换器1为需要例行使用的电源转换器,转换器2为用于能量反馈的转换器,Pi为系统外给转换器1的输入能量,Pw为转换器1转换过程中的消耗能量,Po为例行使用电源转换器1正常应输出的能量,同时也是转换器2的输入能量;Pwf为用于能量反馈的转换器2转换过程中的消耗能量,Pf为转换器2反馈给电源转换器1的能量。

 
图3有反馈模式的能量转换图

假设电源转换器1和转换器2的转换效率都为80%,则转换器1转换过程消耗能量同模式1为:Pw=25%Po,由转换器的转换效率得转换器2转换过程的消耗能量:Pwf=20%Po,根据能量守衡定律,则整体总消耗能量:Pi=Pw+Pwf=25%Po+20%Po=45%Po。

从以上两种模式情况下,能量消耗分析可以得出结论,采用具有能量反馈的工作模式进行例行老化使用时,所消耗的能量只要工作能量的0.45,相比较没有能量反馈的例行老化使用,总消耗能量为工作能量的1.25倍.因此具有能量反馈的例行老化使用模式节约能源。

系统实现

从以上两种工作模式分析所得,可以利用能量反馈形成能量循环系统,减少能量消耗,系统工作可由图4示意,包括三个部分:

 

图4能量反馈系统实现示意图

a)电源部分,为系统提供外在激励源;

b)转换器部分为需要例行老化的电源设备,将输入电源电压转换为需要输出电压;

c)能量反馈部分可将转换器的输出电压转换为转换器的输入电压。

能量反馈部分和需要例行试用的转换器组成一个能量循环系统,在外电源的激励下,系统保持额定功率运转。由功率公式P=U*I,U由例行老化的电源转换器稳定,要保证该额定功率,就是保证输出电流I,即能量反馈部分设计成恒流电路,所以系统在额定功率下,保证能量循环稳定工作的等效控制量为需要例行使用的电能转换器的输出电流。


在能量反馈部分就要能实现上述要求,保证稳定的电能转换器的输出电流,采用电流传感器检测电能转换器的输出电流,同时反馈部分采用反馈电压与输出控制电流之间成反比系数关系即Uf∝K/Io,为便于分析,设电源电压Ui为稳定值。当输出电流较小时,通过调节反馈电压,使其变大,则反馈电压与输入的电压差△U=Uf-Ui变大,相应的由反馈电压流向输入电压的电流加大,造成相应的反馈功率加大;当输出电流较大时,通过调节反馈电压,使Uf变小,则反馈电压与输入的电压差△U变小,相应的由反馈电压流向输入电压的电流减小,造成循环的功率减小;整个过程维持负反馈控制,最终达到动态平衡,维持设定的额定功率。

反馈设计

从以上能量反馈系统工作分析可知,能量反馈部分为系统稳定工作提供必要的保证,能量反馈部分组成可由图5所示,主要包括:输入部分、功率转换部分、输出部分、采样、基准、比较器和控制器七个组成部分。

 

图5能量反馈组成框图

a)输入部分是对输入电能必要的滤波处理同时为控制器部分电路提供辅助工作电源;

b)功率转换部分作用主要是在控制器的控制下,将输入电能转换为需要的电能;

c)输出滤波部分主要作用是对功率转换部分输出电能进行必要的滤波;

d)采样部分主要是对输出电能采样提供与输出呈线性关系的采样信号;

e)基准部分提供与采用比较的稳定参考值;

f)比较器将采样信号与基准信号比较,产生两者的误差信号;

  g)控制器部分作用是根据比较器提供的误差信号,给出对功率转换部分的控制信号。

对于功率转换部分的电路拓扑可根据功率大小以及转换电压,选定如buck型或boost型以及由此引申的各种电路形式。控制器可选用专门的控制芯片或通用的处理芯片实现上述要求的控制。

试验过程与结果

根据上述反馈部分的设计要求,采用一种转换电压从48V到200V功率为180W的直流变换器为需要例行老化的转换器1,用于能量反馈的转换器2电路主要包括两大主要部分:分为功率转换部分和控制器部分。在功率转换部分的采用推挽转换方式电路和全桥整流电路。控制器采用UNITRODE公司的固定频率,电流模式的PWM控制芯片3846,其内部电路图由振荡器、误差放大器、基准源、锁存器、图腾输出等组成。其主要特点是:逐周波电流限制、支持缓启动、差分电流检测放大、高达500的工作频率、500的峰值图腾输出以及欠压锁定等功能,比较便于外围功能设定。按照上述的系统设计,依据例行老化。

 

图6试验结果对比图

 

转换器1的输出功率,测试系统相应的消耗功率,同时对比没有电能反馈模式下的消耗功率,所得的对比结果如图6所示,由图可知,在通常工作模式情况下,消耗功率大于输出功率,同时随着输出功率增大迅速上升;对于有能量反馈的模式,系统消耗功率小于工作循环功率,在输出功率为100W前,曲线的增长率较大,在输出功率大于100W后,曲线增长率较小且有一定的收敛趋势。

结果分析:在通常工作模式情况下,曲线的波动是由于电能转换器的转换效率影响造成的,由前面原理分析可知消耗功率为Pi=Po+Pw,如果转换效率为,则Pi=Po/η,转换效率η通常随着输出功率的变化有一定的波动,所以曲线的波动符合理论分析;在有反馈的工作模式情况下,由前面原理分析部分得系统的消耗功率为Pi=Pw+Pwf,分别设转换器1的转换效率为η1,反馈部分的转换效率为η2,则系统的消耗功率为:

 

由于η1和η2随着功率的加大都会有所提高,所以系数1/η1-η2会有一定的收敛,相应的功率消耗有一定的收敛符合理论分析。

基于能量循环的老化节能实现方法具有明显的节能效果,能大幅度降低电源老化过程的电能消耗,从本质上解决电源老化设备大能耗问题。有利于降低生产企业的生产成本,提高企业生产现代化水平,为国家节能降耗做出贡献。

关键字:电源转换器  转换效率  功率转换 编辑:探路者 引用地址:基于能量循环的电源节能方案

上一篇:主流A/D转换芯片学习详解
下一篇:3A 线性稳压器可非常容易地并联以分散功耗和热量

推荐阅读最新更新时间:2023-10-17 15:11

功率因数校正AC/DC开关转换技术
  一般高功率因数(PF)AC/DC电源由两级组成:在DC/DC转换器前加一级前置功率因数校正器,至少需要两个主开关管和两套控制驱动电路。对于小功率开关电源来说,总体效率低,成本高。   对输人功率因数要求不高的情况下,用PFC和转换器组合电路构成小功率AC/DC开关电源,只需用一个主开关管就可以使PF校正到0.8以上,称为单管单级(Sing1e SwitchSing1e Stage,S4)PF校正AC/DC转换器。例如,一种隔离式S4PF校正AC/DC转换器,前置功率因数校正器用DCM运行的Boost转换器,后置电压调节器主电路为反激转换器,按CCM或DOM运行;两级电路合用一个主开关管。当然,如果加有源钳位或其他软开关技
[电源管理]
美国国家半导体推出3款能源转换效率极高的高速差分放大器
美国国家半导体利用以上几款放大器配合该公司多款模拟/数字转换器、时钟调整器及电源管理集成电路,分别设计了三款参考设计电路板, 适用于无线通信基础设备、测试和测量仪表以及国防和航天设备 二零零七年九月二十四日 -- 中国讯 -- 美国国家半导体公司 (National Semiconductor Corporation)(美国纽约证券交易所上市代号:NSM)宣布推出3款能源转换效率极高的全新高速差分放大器,其特点是应用范围极广,尤其适用于无线通信基础设备、测试和测量仪表以及国防和航天设备。这3款放大器是美国国家半导体PowerWise高能效模拟芯片系列的最新型号。这几款新产品的推出显示了美国国家半导体高度重视系统设计的能源转
[新品]
PWM DC/DC转换功率开关器件的对偶
  半导体开关器件是有极性的,因此在用开通与关断互为对偶这一基本原则,以决定开关管或开关二极管的对偶器件时,要注意它们的极性。当 然,二极管的对偶器件还是二极管,开关管的对偶器件也仍然是开关管。   如图1(a)是一个串联晶体管原电路,如图1(b)为它的对偶电路。其中开关管V与V'对偶,电压源与电流源对偶,电阻R与电导G对偶。电路中各支路 的正方向是给定的,称为有向支路。由有向支路组成的有向图,可以画出任一电路的有向主电路图。在画对偶有向图时,对偶有向支路必须与 原有向图中相应支路成90°,并了解对偶图的正方向规则。   如图1 晶体管开关电路   规则1:原电路中取顺时针方向为网孔电流正方向,则对偶电路中独立节
[电源管理]
PWM DC/DC<font color='red'>转换</font>器<font color='red'>功率</font>开关器件的对偶
借助高能效GaN转换器,提高充电器和适配器设计的功率密度
如今, 充电器和适配器应用最常用的功率转换器拓扑是准谐振(QR)反激式拓扑 ,因为它结构简单、控制简便、物料(BOM)成本较低,并可通过波谷切换工作实现高能效。然而,与工作频率密切相关的开关损耗和变压器漏感能量损耗,限制了QR反激式转换器的最大开关频率,从而限制了功率密度。 在QR反激式转换器中采用GaN HEMT和平面变压器,有助于提高开关频率和功率密度。然而,为了在超薄充电器和适配器设计中实现更高功率密度,软开关和变压器漏感能量回收变得不可或缺。这必然导致选用本身效率更高的转换器拓扑。 本文阐述了如何将 英飞凌的CoolGaN™集成功率级(IPS)技术 应用于有源钳位反激式(ACF)、混合反激式(HFB)和LLC转换器
[电源管理]
借助高能效GaN<font color='red'>转换</font>器,提高充电器和适配器设计的<font color='red'>功率</font>密度
如何测量多相降压转换器集成电路的效率
由于多相降压转换器的性质,静态工作条件下的感知效率会有所不同,具体取决于负载和输出电压测量连接以及PCB布局的对称性。评估多相降压转换器的工程师应了解本文探讨的效率测量的细微差别以及PCB布局。需要解决如何公平地比较不同评估板上多相降压转换器的效率问题。本应用笔记探讨了根本原因,并提供了一种测量多相降压转换器最精确效率的方法。 介绍 测量多相DC-DC转换器的效率可能很棘手。布局不平衡导致各相之间的电压差异。工程师在评估这些转换器时,必须仔细考虑如何测量输入和输出电压及电流,以得出正确的数字。本应用笔记探讨了多相降压转换器的细微差别,并提供了一种正确测量效率的方法 背景 由于多相降压转换器的性质,静态工作条件下的感知效率会
[测试测量]
如何测量多相降压<font color='red'>转换</font>器集成电路的<font color='red'>效率</font>
设计开关电源转换器中电容阵列的数学方法
  在便携音乐播放器和笔记本/桌面计算机等消费电子设备中,通常会包含ASIC、处理器、存储器和LED背光等器件。作为系统负载,这些器件需在合适的电压下才能正常工作,所以人们通常使用能改变电压的转换器为这些器件供电。电压转换器通常使用开关拓扑,电容器则在负载电流发生跃变时或在负载时变的情况下被用于解耦负载。   由于还没有一种计算方法能计算出充分且必要的电容量,所以,系统设计者在设计用于降压转换器输出端的电容阵列时,常常面临很多困难:或许会选择了较小的电容量,转换器的电压可能达不到要求进而导致负载工作不稳定;或许选择的电容量偏大,在元件成本和PCB面积方面造成浪费,进而额外增加消费电子设备的单位成本。   降压转换器自身带有
[电源管理]
设计开关<font color='red'>电源转换</font>器中电容阵列的数学方法
伟创力推出数字1/8砖DC/DC转换器,可提供1100W峰值功率
伟创力电源模块(Flex Power Modules)——现在宣布推出BMR492系列数字1/8砖中间总线转换器。该转换器可提供600至800W的连续功率,并能在小于1s的短时间内提供最高1100W的峰值功率。这种所谓的“突发模式”工作,对数据通信和数据中心应用中的CPU(例如Intel的Ice Lake处理器等)来说通常需要提供。 新款BMR4920302/861转换器是即将推出的BMR492系列中的三个版本中的第一个,它可以提供12V输出。该DC/DC降压解决方案的额定最大输出功率为600W,输入电压范围为40-60V,因此非常适合数据中心服务器应用中常见的标称48或54V输入电压系统使用。该器件可实现全稳压输出,并且其输
[电源管理]
伟创力推出数字1/8砖DC/DC<font color='red'>转换</font>器,可提供1100W峰值<font color='red'>功率</font>
Vishay推出业内先进的小型6A、20A和25A降压稳压器模块,提高POL转换功率密度
microBRICK®器件采用10.6 mm x 6.5 mm x 3 mm封装,小于竞品解决方案69 %,输入电压4.5 V至 60 V 美国 宾夕法尼亚 MALVERN、中国 上海 — 2023年9月6日 — 日前,威世科技Vishay Intertechnology, Inc.宣布,推出新型6 A、20 A和25 A microBRICK® 同步降压稳压器---SiC967、SiC931和SiC951,用来提高负载点(POL)转换器的功率密度和效率。 Vishay Siliconix SiC967、SiC931和SiC951采用10.6 mm x 6.5 mm x 3 mm封装,占位面积和高度均小于市场上此类器件,输入电
[电源管理]
Vishay推出业内先进的小型6A、20A和25A降压稳压器模块,提高POL<font color='red'>转换</font>器<font color='red'>功率</font>密度
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved