浅谈Boost升压电路的原理及设计

最新更新时间:2013-01-23来源: 电源网关键字:Boost  升压电路  原理 手机看文章 扫描二维码
随时随地手机看文章
在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。

UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。

1 UC3842芯片的特点

UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MOSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。

由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是:

1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率;

2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率;

3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作;

4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

2 Boost电路结构及特性分析

2.1 由UC3842作为控制的Boost电路结构

由UC3842控制的Boost拓扑结构及电路分别如图1和图2所示。

 

图2中输入电压Vi=16~20V,既供给芯片,又供给升压变换。开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(Vo-Vi)/L的速度释放到输出电容器C2中。输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。

整个稳压过程由二个闭环来控制,即

闭环1 输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。

闭环2 Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。误差信号实际控制着峰值电感电流。

2.2 Boost升压结构特性分析

Boost升压电路,可以工作在电流断续工作模式(DCM)和电流连续工作模式(CCM)。CCM工作模式适合大功率输出电路,考虑到负载达到lO%以上时,电感电流需保持连续状态,因此,按CCM工作模式来进行特性分析。

Boost拓扑结构升压电路基本波形如图3所示。

ton时,开关管S为导通状态,二极管D处于截止状态,流经电感L和开关管的电流逐渐增大,电感L两端的电压为Vi,考虑到开关管S漏极对公共端的导通压降Vs,即为Vi-Vs。ton时通过L的电流增加部分△ILon满足式(1)。

 

式中:Vs为开关管导通时的压降和电流取样电阻Rs上的压降之和,约0.6~0.9V。

toff时,开关管S截止,二极管D处于导通状态,储存在电感L中的能量提供给输出,流经电感L和二极管D的电流处于减少状态,设二极管D的正向电压为Vf,toff时,电感L两端的电压为Vo+Vf-Vi,电流的减少部分△ILoff满足式(2)。

 

式中:Vf为整流二极管正向压降,快恢复二极管约0.8V,肖特基二极管约0.5V。
在电路稳定状态下,即从电流连续后到最大输出时,△ILon=△ILoFf,由式(1)和(2)可得

 

如果忽略电感损耗,电感输入功率等于输出功率,即

 

由式(4)和式(5)得电感器平均电流

 

同时由式(1)得电感器电流纹波

 

式中:f为开关频率。

为保证电流连续,电感电流应满足

 

考虑到式(6)、式(7)和式(8),可得到满足电流连续情况下的电感值为

 

另外,由Boost升压电路结构可知,开关管电流峰值Is(max)=二极管电流峰值Id(max)=电感器电流峰值ILP,

3 样机电路设计

样机的电路图如图2所示,是基于UC3842控制的升压式DC/DC变换器。电路的技术指标为:输入Vi=18V,输出Vo=40V、Io=2A,频率f≈49 kHz,输出纹波噪声1%。

根据技术指标要求,结合Boost电路结构的定性分析,对图2的样机电路设计与关键参数的选择进行具体的说明。

3.1 储能电感L

根据输入电压和输出电压确定最大占空比。由式(4)得

 

当输出最大负载时至少应满足电路工作在CCM模式下,即必须满足式(9),

  

同时考虑在10%额定负载以上电流连续的情况,实际设计时可以假设电路在额定输出时,电感纹波电流为平均电流的20%~30%,因增加△IL可以减小电感L,但为不增加输出纹波电压而须增大输出电容C2,取30%为平衡点,即

L可选用电感量为140~200μH且通过5A以上电流不会饱和的电感器。电感的设计包括磁芯材料、尺寸、型号选择及绕组匝数计算、线径选用等。电路工作时重要的是避免电感饱和、温升过高。磁芯和线径的选择对电感性能和温升影响很大,材质好的磁芯如环形铁粉磁芯,承受峰值电流能力较强,EMI低。而选用线径大的导线绕制电感,能有效降低电感的温升。

3.2 输出电压取样电阻R1、R2

因UC3842的脚2为误差放大器反向输入端,芯片内正向输入端为基准2.5v,可知输出电压Vo=2.5(1+R1/R2),根据输出电压可确定取样电阻R1、R2的取值。

由于储能电感的作用,在开关管开启和关闭时会形成大的尖峰电流,在检测电阻Rs上产生一个尖峰脉冲,为防止造成UC3842的误动作,在Rs取样点到UC3842的脚3间加入R、C滤波电路,R、C时间常数约等于电流尖峰的持续时间。

3.3 开关管S

开关管的电流峰值由式(10)得

Iv(max)=ILP=5.11A

开关管的耐压由式(11)得

Vds(off)=Vo+Vf=40+0.8=40.8V

按20%的余量,可选用6A/50V以上的开关管。为使温升较低,应选用Rds较小的MOS开关管,要考虑的是通态电阻Rds会随PN结温度T1的升高而增大。

图4为实测开关管的开关电压波形和电流瞬态波形图。

 

3.4 输出二极管D和输出电容器C2

升压电路中输出二极管D必须承受和输出电压值相等的反向电压,并传导负载所需的最大电流。二极管的峰值电流Id(max)=ILP=5.11A,本电路可选用6A/50V以上的快恢复二极管,若采用正向压降低的肖特基二极管,整个电路的效率将得到提高。输出电容C2的选定取决于对输出纹波电压的要求,纹波电压与电容的等效串联电阻ESR有关,电容器的容许纹波电流要大于电路中的纹波电流。

电容的ESR<△Vo/△IL=40x1%/1.33=O.3Ω。

另外,为满足输出纹波电压相对值的要求,滤波电容量应满足

 

根据计算出的ESR值和容量值选择电容器,由于低温时ESR值增大,故应按低温下的ESR来选择电容,因此,选用560μF/50V以上频率特性好的电解电容可满足要求。

3.5 外补偿网络

UC3842误差放大器的输出端脚l与反相输入端脚2之间外接补偿网络Rf、Cf。 Rf、Cf的取值取决于UC3842环路电压增益、额定输出电流和输出电容,通过改变Rf、Cf的值可改变放大器闭环增益和频响。为使环路得到最佳补偿,可测试环路的稳定度,测量Io脉动时输出电压Vo的瞬态响应来加以判断。

图5为Cf选用0.0lμF和470pF时动态响应控制波形的区别,上冲下降幅度和复位时间都有差别。

3.6 斜坡补偿

在实用电路中,增加斜坡补偿网络,一般有二种方法,一是从斜坡端脚4接补偿网络Rx、Cx至误差放大器反相输入端脚2,使误差放大器输出为斜坡状,再与Rs上感应的电压比较。二是从斜坡端脚4接补偿网络Rx、Cx到电流感应端脚3,将在Rs的感应电压上增加斜坡的斜率,再与平滑的误差电压进行比较,作用是防止谐波振荡现象,避免UC3842工作不稳定,同时改善电流型控制开关电压的噪声特性。本文采用方法二。

3.7 保护电路

当UC3842的脚3电压升高超过1V或脚1电压降到1V以下,都可使PWM比较器输出高电平,造成PWM锁存器复位。根据UC3842关闭特性,可以很容易在电路中设置过压保护和过流保护。本电路中Rs上感应出的峰值电流形成逐个脉冲限流电路,当脚3达到1V时就会出现限流现象,所以,整个电路中的电感磁性元件和功率开关管不必设计较大的余量,就能保证稳压电路工作可靠,降低成本。

4 结语

按以上原理和计算设计丁输入18V,输出40V的80W升压DC/DC电路,整个电路调试容易,工作稳定,可靠性高,效率达80%以上,特别是成本低,已应用于实际设备中。另外,可根据具体的电路指标要求,对电路灵活控制、变动,设计出其他的应用电路。

关键字:Boost  升压电路  原理 编辑:探路者 引用地址:浅谈Boost升压电路的原理及设计

上一篇:电源设计中IC驱动电流不足的解决方案
下一篇:绘制数显温度计电路图及PCB设计方法

推荐阅读最新更新时间:2023-10-17 15:14

智能潜水型电磁流量计的工作原理及设计
内容说明 本实用新型涉及一种电磁流量计,具体涉及一种智能潜水型电磁流量计。 发明背景 智能电磁流量计是一种速度式流量仪表,是集信号检测及微电子智能化为一体的高新机电产品,无流阻、无可动部件、计量准确、稳定,能测量导电液体,包括酸、碱、盐等强腐蚀性液体和纸浆、泥浆、废污水及固液两相悬浮液的体积流量。该产品广泛应用于石油、化工、冶金、纺织、食品、制药、造纸等行业及环保、市政管理、水利建设等领域。目前使用的电磁流量计主要存在以下缺点:由于整体结构密封不可靠,内部的励磁线圈和电极非常容易受到腐蚀,造成使用时灵敏度较差,无法准确的输出信号,长时间使用后也易损坏,使用寿命较短;在维修时不便于拆卸,维修较为麻烦工作量较大;功耗大,工作不稳定
[测试测量]
智能潜水型电磁流量计的工作<font color='red'>原理</font>及设计
低失真有源混频器AD831的工作原理及应用
    摘要: AD831是美国AD公司生产的单片低失真混频器,它采用双差分模拟乘法器混频电路。文中介绍了AD831的工作原理、内部电路、引脚排列及功能说明,最后给出了AD831在频踪式雷达本振中的应用电路。     关键词: 混频器 射频 本振 中频 AD831 混频器在广播、通信、电视等外差式设备及频率合成设备中具有广泛的应用,它是用来进行信号频率变换并可保持调制性质不变的电路组件,其性能对整个系统有着足轻得的作用。AD831是AD公司生产的低失真、宽动态范围的单片有源混频器,它输入输出方式多样,使用灵活方便。 1 AD831的组成及主要特点 AD831由混频器、限幅放大器、低噪声输出放大器和偏
[半导体设计/制造]
PIC16F84A单片机教程板详解(PCB图和原理图)
  这是一个新的设计,基于流行 PIC16F84A 单片机教程板 。它具有8个单个的LED,7段显示器,LCD显示器和五个按钮 。这是一个理想的解决方案,为初学者采取/她在微控制器的世界第一的编程步骤。有一个在电路编程(ICP)头,它可以轻松地重新编程,无需拔下单片机每次,提供程序员也支持此功能(如OziPic'er) 。      连接      功能说明   - S1 开关板的开启和关闭。时,LED指示灯LED9点亮   - S2的 复位微控制器。   - S8 开关液晶显示器和关闭   - S9 交换机八个单独的LED和七段显示和
[单片机]
PIC16F84A单片机教程板详解(PCB图和<font color='red'>原理</font>图)
X光异物检测系统的检测原理及优势
X光异物检测系统是一种根据X光在不同物质材料上的穿透能力(或者说不同物质具有对X光不同的吸收能力)的原理研制,通过图像处理方法检测物品中是否含有不同于产品本身物质材料的异物。这种检测设备目前在食品领域应用较多。 和金属检测机的检测能力相比较,X光异物检测系统有如下优点: (1)有更好的金属异物检测能力,并能检测产品中的玻璃和PVC等非金属异物。 (2)对豆沙,酱类等含水产品中的金属异物具有良好的检测能力。 (3)对镀铝膜包装的休闲食品,铝箔包装的奶制品和熟食类产品中的金属异物具有良好的检测能力。 (4)检测能力不受冷冻产品状态影响。 (5)能检查产品内物品的缺失,并能对产品的某部分屏蔽检查。 基于X光异物检测系统
[测试测量]
氦气检漏仪的工作原理
氦气检漏仪的工作原理 主要有离子源、分析器、收集放大器、冷阴极电离真空计组成. 离子源是气体电离,形成一束具有特定能量的离子. 分析器是一个均匀的磁场空间,不同离子的质荷比不同; 在磁场中就会按照不同轨道半径运动而进行分离,再设计时只让氦离子飞出分析器的缝隙;打在收集器上. 收集放大器收集氦离子流并出入到电流放大器.通过测量离子流就可知漏率. 冷阴极电离真空计指示质谱室的压力保护装置.
[测试测量]
一文看懂低压断路器工作原理及选型
低压断路器(曾称自动开关)是一种不仅可以接通和分断正常负荷电流和过负荷电流,还可以接通和分断短路电流的开关电器。低压断路器在电路中除起控制作用外,还具有一定的保护功能,如过负荷、短路、欠压和漏电保护等。低压断路器的分类方式很多,按使用类别分,有选择型(保护装置参数可调)和非选择型(保护装置参数不可调),按灭弧介质分,有空气式和真空式(目前国产多为空气式)。低压断路器容量范围很大,最小为4A,而最大可达5000A。低压断路器广泛应用于低压配电系统各级馈出线,各种机械设备的电源控制和用电终端的控制和保护。 低压断路器特性及技术参数 我国低压电器标准规定低压断路器应有下列特性参数: 1)型式: 断路器型式包括相数、极
[工业控制]
单相、三相多功能电能表及网络电能表原理及设
单相、三相多功能电能表及网络电能表原理及设计 中国目前已成为世界电能计量行业最具有活力的市场。城乡电网改造结束后,电能表市场需求从高速增长期逐步向平稳发展期过渡,居民新增表、网改轮换表以及对外出口的推动使电能表仍有巨大的市场容量。同时电能表也从普通功能型向长寿命、高精度、分时段、多功能、网络化等高科技含量和高附加值的方向发展。 图1:单相多功能电能表功能框图。 单相多功能电能表 本文介绍的方案的电能计量芯片选用美国ADI公司的ADE7753。ADE7753集成了2路16位Δ-ΣADC、高性能DSP、电压基准及温度传感器等电路,在1000:1动态范围内误差
[电源管理]
单相、三相多功能电能表及网络电能表<font color='red'>原理</font>及设
射频识别技术原理分析
射频识别(RFID)技术相对于传统的磁卡及IC卡技术具有非接触、阅读速度快、无磨损等特点,在最近几年里得到快速发展。为加强中国工程师对该技术的理解,本文详细介绍了RFID技术的工作原理、分类、标准以及相关应用。 RFID技术利用无线射频方式在阅读器和射频卡之间进行非接触双向数据传输,以达到目标识别和数据交换的目的。与传统的条型码、磁卡及IC卡相比,射频卡具有非接触、阅读速度快、无磨损、不受环境影响、寿命长、便于使用的特点和具有防冲突功能,能同时处理多张卡片。在国外,射频识别技术已被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多领域。 系统组成和工作原理 最基本的RFID系统由三部分组成: 1. 标签(Tag,即射频卡)
[测试测量]
射频识别技术<font color='red'>原理</font>分析
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved