浅谈博弈电路系统设计

最新更新时间:2013-01-28来源: 电源网关键字:博弈电路  系统设计 手机看文章 扫描二维码
随时随地手机看文章
机器博弈是人工智能学科的一个重要研究方向,被称为人工智能领域的“果蝇”,是检验人工智能发展水平的一个重要方面。国内外研究专用博弈集成电路系统的成果还较少,基本上都是采用高性能或多CPU的计算机来实现,使系统像大型服务器那样庞大。因此,本文以牛角棋为载体,进行机器博弈算法硬件实现技术的研究,使用片上可编程系统(System on a Programmable Chip,SoPC)开发了完整的牛角棋的双人博弈系统。进而为开发体积小、实时性能高的机器博弈专用硬件板卡系统进行探索。

1 牛角棋博弈软件设计

1.1 系统总体结构

根据牛角棋博弈系统的功能需求分析,将系统进行模块划分,系统总体功能结构如图1所示。

 

1.2 招法生成

招法生成模块提供了在局面中选出所有可行招法的功能,从而为正确地展开博弈树提供了支持。

1.2.1 牛角棋的数字化描述

为了让计算机下棋,首先就要将所有的棋局元素,包括棋盘、棋子、棋局、着法、规则、知识等通过数字化(编码)成为数据元素,而各种数据元素再以特定的关系构成相应的数据结构进行存储和处理。

牛角棋的棋盘和棋子编码如图2所示。12个棋位编码为0~11,红子用0表示,两黑子分别用1和2表示。这样初始棋局便可有两种形式的表示:

(1)棋位向量(0,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,2);

(2)棋子向量(11,10,0)。

1.2.2 招法的形式化描述

用表示红蓝3枚棋子在第n步时的棋位,第n步时刻的棋位向量的形式化描述为状态Sn:

 

式中qn+1为第n+1时刻的招法。

由于红子走子方向不受限制,可上可下,可横走,只能走向空位,不得跳跃。所以红方棋子可以表述为:

 

蓝方的棋子走棋方向受到限制,只能上不能下,可以横走,只能走向空位,不得跳跃。故蓝方的两枚棋子可以描述为:

1.2.3 预置表招法生成

预置表可看作一个可快速检索到满足某些简单条件的、预先生成的招法列表的知识库。

对照图2棋盘的编码方式,参照牛角棋的规则,一种预置招法表的设计方案如图3所示。

 

preTable是三维的预置表,其中的两个高维度分别代表了2个条件:

(1)棋子的颜色是什么;

(2)棋子处在什么位置上。

在明确上述两个条件的具体值之后,就可以获得全部可行着法的列表。由于预置表是频繁访问的数据,所以,预置表占用的空间不应太大,而且执行时应以能够载入内存为宜,所以针对具体棋类还须因地制宜地采用一些技巧。

1.3 搜索控制

在解决机器博弈问题中,搜索是机器博弈的核心,他控制着系统各个模块的调用,他效率的高低直接影响搜索的速度,是决定整个博弈系统棋力高低的首要因素。

首先,他调用招法生成模块,对当前局面产生所有可能的招法并将产生的招法保存到招法列表中。然后,判断当前局面是否有获胜方,如果有获胜方返回当前局面的估值;否则再判断是否是叶子节点,如果是叶子节点,调用估值模块对当前局面进行估值并将其返回;如果不是叶子节点则按照当前招法走一步棋并且调用自身将刚生成的节点展开,此过程一直持续下去直到分出胜负或者搜索到叶子节点。接着,按照走法将当前局面撤销,退到没有走棋时的局面。然后判断是否需要剪枝。以上过程反复执行,将庞大的博弈树一层一层展开以搜索最佳招法,并将其输出。

在NiosⅡ系统中,使用递归调用的方式来实现搜索算法,使用负极大值算法(Negamax algorithm),并且采用固定深度的深度优先搜索,同时配合α-β剪枝技术来搜索最佳招法。

1.4 局面评估

对叶子结点所对应的局面打分是估值函数的职责,通过对局面的量化值来表示局面的好坏,而博弈树的其他节点的值则通过算法从叶子节点返回得到。函数的输入是待评估的函数,输出是一个数值。

博弈树的叶子结点是需要调用估值函数加以估值的结点。而博弈树的中间结点和根节点的分值,均可利用极大极小原理从叶子节点的取值倒推出来。除了残局阶段,搜索树中的大部分叶子结点,都是未分胜负的结点,需要估值函数对该局面做出评价,并以数值的形式反映优劣程度。一般地,将所有特征的取值的加权和作为估值函数值。局面p的估值函数V(p),一般形式如下:

 

式中:fi表示特征;wi表示权值。

需要注意到是,对于负极大值算法中叶子节点的估值必须对那一方走棋敏感,评估模块设置使能信号,在搜索状态机发出评估使能信号后,评估模块立即对当前局面进行评估并在一定的延时后返回局面的评估值。如果评估使能信号无效,评估模块的输出保持在高阻态,不对局面进行评估。

2 牛角棋博弈系统硬件设计

本系统的处理器为NiosⅡ嵌入式软核处理器。NiosⅡ是Altera公司提出的数字系统SoPC解决方案,使得处理器可配置到可编程逻辑器件之中,因此被称为软核处理器。NiosⅡ软核处理器与常见的微控制器相似,它们都是在一个芯片上包含了处理器、存储器、以及输入/输出电路等功能模块。相对于微控制器,NiosⅡ软核处理器最大的特点为它是一种软核、可配置的系统。软核表示处理器的目标器件只有在下载设计文件后才具备处理器的功能;可配置意味着处理器系统的组成和性能可以根据需要进行调整。另外,系统还包含计时模块和PLL分频模块,硬件系统主要包括NiosⅡ快速型内核、SDRAM、三态桥(tristate bridge)cfi控制器、sysid和并行输入输出(pio)。对系统的各个模块添加和配置完成之后,可以使用SoPC Builder自动配置各个模块的的地址和系统的中断。

3 测试结果

该设计采用的开发板为A1tera公司的DE2 FPGA开发板,板上的FPGA为CycloneⅡ系列,芯片的型号为EP2C35F672C2。

SoPC系统配置完成以后,在原理图中将系统各个模块的硬件系统进行连接,生成硬件系统原理图。之后,对系统进行综合、时序分析等操作,完成硬件系统的调试。接着对FPGA的引脚进行锁定,然后将硬件系统全编译生成FPGA配置文件用于配置FPGA。在使用QuartusⅡ将SoPC系统硬件配置到FPGA之后即可在NiosⅡIDE中对系统的软件进行在线调试。

博弈树的搜索最大层数设置为15层,对系统重新进行编译成功以后将FPGA配置文件和软件一起下载到FPGA上进行验证,图4为验证过程中的一些局面。其中(a)为游戏开始时的局面,蓝方2枚棋子和红方棋子的棋位分别为11,10,0,图中显示的是十六进制,此时机器等待用户选择走棋方;(b)为游戏过程中的一个局面,此时蓝方2枚棋子和红方棋子的棋位分别为9,6,4;(c)是游戏结束时的局面,此时红子被蓝子憋在牛角尖处无法移动,蓝方获胜,LEDG7闪亮。

在SoPC系统中,设置的最大搜索层数为15层。从上面的结果可以看出,每个局面搜索时间最大为2 s,满足系统设计是的性能要求:最大搜索深度大于10层;每个局面最大搜索时间最大不超过3 s。针对系统的智能性和速度方面的测试结果如表1所示。选10个人每人做10次实验,共计100次实验,对实验结果进行综合分析得到数据如表1所示。

从上面结果可以看出:系统的智能性还有待提高,这主要是为了使系统搜索更快而降低搜索层数导致的结果。

4 结语

本文以牛角棋的博弈过程为研究载体,论述了机器博弈系统的设计和实现过程。实验结果表明本文方法具有较好的智能性和实时性。随着现代集成技术的发展,FPGA的规模和速度不断提高。更加丰富的逻辑资源和嵌入了RAM块,使得利用FPGA技术设计复杂度很高的棋类博弈系统(如中国象棋)成为可能。

关键字:博弈电路  系统设计 编辑:探路者 引用地址:浅谈博弈电路系统设计

上一篇:基于光电显示用透明导电膜及玻璃(ITO)的原理
下一篇:变频电源的功能种类介绍

推荐阅读最新更新时间:2023-10-17 15:14

嵌入式系统设计中的USB OTG方案
  与PC系统相比,设计工程师在嵌入式系统中实现USB将面临很多挑战和局限性,包括功耗、PCB面积、CPU处理能力等。本文以TD1120为例,分析了嵌入式应用中USB OTG控制器的功能特性,以及基于TD1120的软件实现。   移动设备和嵌入式市场的爆炸性增长促进了通过公共标准接口在不同设备之间进行方便的数据共享需求的增长。通用串行接口(USB)的广泛应用稳固了其作为业界标准接口的地位,已经成为嵌入式系统I/O连接的事实标准。USB的成功和流行归功于其具有热拔插和即插即用的易用性能。USB从最初引入到PC,到目前已经迅速扩展到非PC的应用,包括移动嵌入式系统。今天嵌入式系统生产商的问题已经不是在产品中实现USB,而是如何最佳地将U
[嵌入式]
基于USB2.0总线的高速数据采集系统设计
1 引言 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI卡或ISA卡,存在以下缺点:安装麻烦、价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。
[单片机]
多内核处理器开发趋势下的高性能视频系统设计
  时钟频率的提高带来的高功耗、深亚微米半导体制造工艺漏电流产生的高功耗以及更多的设计挑战促使处理器设计制造商开始将思路转向到多内核集成的解决方案上来。多核处理器技术是提高处理器性能的有效方法,因为处理器的实际性能是处理器在每个时钟周期内所能处理指令数的总量,因此增加一个内核,处理器每个时钟周期内可执行的单元数将增加一倍。上世纪末期,双内核处理器开始进入高端服务器产品。随着Intel和AMD公司先后推出双内核CPU以来,多内核CPU在个人电脑中的应用已经成为无可逆转的趋势,多内核架构在处理器性能、低功耗、缩小系统电路面积等方面都表现出了显著的优势。   从某些方面来说,嵌入式应用对处理器的需求更为苛刻,特别是低功耗、低成本方
[嵌入式]
以MSP430单片机为核心的电力传输线路监测系统设计
引言 为解决人工调整电力传输线路中偏相观测难、记录难、校准难这三大难题。该设计通过对软硬件的设计,实现了较长时间、无间断地对电力传输线路中电流、电压、零序电流、功率因数、有功功率、无功功率、视在功率、基波及谐波电能的监测、记录和存储。该设计采用MSP430F135 单片机为控制核心,结合电压、电流互感器、DSP 电能芯片、人机接口、声光报警电路和信号处理电路等实现对电力传输线路参数的监测,该系统能利用存放在U 盘中长时间采集的数据在上位机进行曲线分析,为电力部门调整线路负荷提供科学、可靠的依据。 1 系统设计方案 1.1 DSP 电能芯片的选择 该设计选用DSP 电能芯片,此芯片具有七路二阶16 位sigma-delta AD
[单片机]
以MSP430单片机为核心的电力传输线路监测<font color='red'>系统设计</font>
WiMAX射频系统设计
  0 引言   固定WiMAX 标准基于正交频分复用( OFDM) 技术,使用256 个副载波; 该标准支持1. 75~ 28 MHz范围内的多个信道带宽,同时支持多种不同的调制方案,包括BPSK、QPSK、16QAM 和64QAM。由于信号宽带及高调制方式等多项技术参数导致射频设计充满挑战性。   1 主要芯片完成功能   本设备采用超外差时分双工方式来完成设计,在符合WiMAX 标准的射频套片推出之前,成功选用SIGE 公司生产的中频芯片SE7051L10 和Texasinstruments 公司生产的射频芯片TRF2436 来完成设计。中频频率固定为380 MHz,射频频率在5. 725~5. 850 GHz频
[网络通信]
基于语音报警的双向遥控车门开关系统设计
引言 遥控车门开关(remote keyless entry,RKE)方案对于汽车的配置来说,已经作为一种标准配置,成为汽车不可或缺的部分。遥控车门开关系统(RKE)对于提高汽车的防盗性、控制性有重要意义。大多数RKE系统具有汽车防盗、报警功能以及用于汽车、行李箱的门禁控制,其中一些系统还包括遥控启动汽车和汽车寻找的功能。以往设计的单向 RKE 系统是由一个控制端与一个执行端组成。这种系统最大的不便是只有用户发送信息给车门,而车门无法将自己的信息反馈给用户,这就使得用户无法知道车子的状况,给车子的安全性带来隐患。此外,由于系统是由电池供电,怎样尽量降低功耗也是一个比较大的问题。为了解决这两个问题,本文设计了一个基于Nordic
[嵌入式]
高速视频信号的光纤传输系统设计
摘要:针对1000帧/秒高速摄影传输系统需要实现数据输出速率600MBps的长距离传输难题,提出了采用CIMT编码方式的光纤数字化传输设计方案。整个系统主要包括数字信号的多路复用、解复用以及PCI数据传输卡三部分。详细阐述了系统原理及硬软件实现方法,设计实现了两路高速视频数字化依赖的15公里远距离传输和计算机实时显示。 关键词:光纤传输 复用 解复用 PCI 高帧频的视频信号不同于普通视频信号,如果采用模拟信号方式传输,它的模拟带宽达到了几十兆甚至一两百兆,这样很难实现远距离传输。而光纤传输容量大、质量高和不易受干扰等特点,在高速数字传输系统中得到了广泛应用。目前国内外针对普通视频信号的光纤传输系统已相当多,而对非标准的高帧频
[应用]
基于STM32+OV7670的低端视频监控系统设计
1 芯片简介 1.1 STM32F407简介 本系统采用的处理器是意法半导体公司的STM32F407,该处理器以32位Cortex—M4为内核,具有浮点运算功能的低端高速ARM,其内部集成了大量可供立即使用的资源,如TFT液晶显示器接口(Flexible Stactie Memory Control,FSMC)、摄像头接口(Camera Inter face)、DMA控制器等,方便且实用。 1.2 OV7670简介 OV7670是OmniVision公司基于CMOS VGA的图像传感器,可通过SCCB总线控制输出整帧、子采集、取窗口等操作,其VGA图像最高可达到30 fps。其对外重要接口有:XCLK(时钟输入)、HREF(输出行
[单片机]
基于STM32+OV7670的低端视频监控<font color='red'>系统设计</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved