设计降压转换器

最新更新时间:2013-01-30来源: EDNchina关键字:设计降压  转换器 手机看文章 扫描二维码
随时随地手机看文章

  设计降压转换器并不是件轻松的工作。许多使用者都希望转换器是一个盒子,一端输入一个直流电压,另一端输出另一个直流电压。这个盒子可以有很多形式,可以是降阶来产生一个更低的电压,或是升压来产生一个更高的电压。还有很多特殊的选项,如升降压、反激和单端初级电感转换器(SEPIC),这是一种能让输出电压大于、小于或等于输入电压的DC-DC转换器。如果一个系统采用交流电工作,第一个AC-DC模块应当产生系统所需的最高的直流电压。因此,使用最广的器件是降压转换器。

  使用开关稳压器的降压转换器具有所有转换器当中最高的效率。高效率意味着转换过程中的能量损耗更少,而且能简化热管理。

  图1显示了一种降压开关稳压器的基本原理,即同步降压转换器。“同步降压”指的是MOSFET用作低边开关。相对应的,标准降压稳压器要使用一个肖特基二极管做为低边开关。与标准降压稳压器相比,同步降压稳压器的主要好处是效率更高,因为MOSFET的电压降比二极管的电压降要低。低边和高边MOSFET的定时信息是由脉宽调制(PWM)控制器提供的。控制器的输入是来自输出端反馈回来的电压。这个闭环控制使降压转换器能够根据负载的变化调节输出。PWM模块的输出是一个用来升高或降低开关频率的数字信号。该信号驱动一对MOSFET。信号的占空比决定了输入直接连到输出的导通时间的百分比。因此,输出电压是输入电压和占空比的乘积。

  选择IC

  上面提到的控制环路使降压转换器能够保持一个稳定的输出电压。这种环路有几种实现方法。最简单的转换器使用的是电压反馈或电流反馈。这些转换器很耐用,控制方式很直接,而且性价比很好。由于降压转换器开始用于各种应用中,这种转换器的一些弱点也开始暴露出来。以图形卡的供电电路为例。当视频内容变化时,降压转换器上的负载也会变化。供电系统能应付各种负载变化,但在轻负载条件下,转换效率降得很快。如果用户关心的是效率,就需要有更好的降压转换器方案。

  一种改进方法是所谓的磁滞控制,Intersil的ISL62871就是采用这种控制方法的器件。转换效率与负载的曲线如图2所示。这些转换器是针对最差工作条件设计的,因此轻负载不是持续的工作条件。这些DC-DC转换器对负载波动变化的适应性更好,并且不会严重影响系统效率。

图2,Intersil ISL62871的负载与效率曲线,Vout=1.1V

  选择开关频率

  尽管器件的开关频率有时是固定的,还是有必要讨论开关频率的问题,主要的权衡因素是效率。简而言之,MOSFET有确定的导通和关断时间。当频率增加时,过渡时间在总时间中所占的百分比会增加。结果是:效率降低了。如果效率是最重要的设计目标,就需要考虑降低开关频率。如果系统效率足够高,就可以采用更高的开关频率。频率更高,就可以使用更小的外部无源器件,即输出电感器和电容器。

  外部器件

  设计分立解决方案是相当有难度的,大约需要40个器件,这是个需要额外付出大量努力的复杂工作。在设计电压模式降压控制器时,外部器件和其寄生效应对系统性能起了很大的决定作用。在讨论每种器件时,我们再详加叙述。

  采用这种特殊降压转换器时,我们必须选择5个额外器件,包括输入电容、输出电容、输出电感器,高边和低边MOSFET。选择输出电感器时,要满足输出纹波的要求,以及减小PWM对瞬态负载的响应时间。电感器感值的下限是由纹波要求确定的。在寻找最小(可能也是最便宜的)电感器之前,要记住的一点是,电感器并不是完美的器件。实际的电感器有饱和等级。饱和级别必须高于系统中的峰值电流,才能设计出成功的产品。有经验的设计者还明白,感值并不是不随电流变化的常量。事实上,流过器件的电流越大,感值会降低的。请核实电感器的数据表,确保你所选择的感值对系统中的峰值电流是足够的。在更大层面上可能犯的错误是选择最好的电感,虽然小心谨慎还是必要的。更大的感值可以减少输出纹波,但也会限制压摆率。最终,大电感会限制对负载瞬态的响应时间。因此在选择电感器时,是选择在更低的峰峰值纹波电流条件下更安静的输出,还是需要系统能够对瞬态事件做出快速的响应,是需要做出明确的折中。

  输入电容负责吸收高边MOSFET输入电流的交流分量。因此,其RMS电流容量必须足够大,才能处理由高边MOSFET汲取的交流分量。由于质量和低温度系数,陶瓷电容器可以对高频分量进行去耦。降压电容器提供更低频率的RMS电流,这取决于占空比(当系统的工作占空比比50%越大,RMS电流越大)。降压电容可以是几个多层陶瓷电容器。然而在低成本应用中,通常使用几个并联的电解电容器。如果是采用表面贴装,可以选固态钽电容用作降压电容,但是必须仔细核对电容器的浪涌电流等级(浪涌电流通常出现在启动时)。在选择降压转换器系统中的任何电容器时,需要寻找具有小等效串联电容(ESL)、小等效串联电阻(ESR),最后是所需的总电容。还有,就是根据约算选择最优的器件。对于电容电压等级,还有一点需要注意。为减少难以发现的故障,可以选择电压等级是输入电压的1.2~1.3倍的电容器,也就是说,电压要跨越输入电压的范围。

  在出现瞬态变化期间,输出电容器必须对输出进行滤波,再向负载提供电流。有趣的是,等效串联电容(ESR)和电压等级比实际容值对选择什么样的电容器影响更大。请注意,来自电感器的峰峰值电流纹波会通过输出电容器的ESR,转换成峰峰值电压纹波。由于系统可能对输出电压纹波有限制,选择一款最小化ESR的电容(或一组并联电容器)就变得十分重要。当然,电容器必须有足够的电压等级。根据这些要求,就可以从供应商的电容器清单中选出最合适的方案。最后要注意的一点是,要对ESR数据加以更多的关注,因为数据表里的ESR数据可能并不是在你所选用的开关频率下得出的。请检查数据表,查看调整过的ESR数值。

  一般根据Rds(on)、栅极电荷和热管理需求来选择MOSFET。查看几家制造商的数据表,可以选择象Infineon BSC050N03LS这样的器件,该器件的栅极电荷为35nC,高边MOSFET的Rds(on)为5mΩ。对应地,可以选择Rds(on)为1.6mΩ的低边MOSFET(BSC016)。

  使环路闭合

  前面已经讨论过,输出要反馈到输入端,这样就产生了一个补偿环路。补偿的方式有很多种,比如Type I、Type II和Type III。Type I是单极点方案,Type II是带有一个零点的双极点方案,Type III是带有两个零点的三极点方案。每种方案的元器件数量都比前一种要多,不过也使得设计灵活性更好。从性能考虑,通常将这个环路的带宽设置为大约是开关频率的四分之一。环路频率与实际开关频率重叠得越多,环路响应就越快。此外,要确保相位裕量大于30°,小于180°,这是一个典型的稳定性标准。

  电压模式转换器的设计流程与磁滞降压转换器的流程类似。幸好,高质量的磁滞模式控制使外部器件的寄生效应不那么重要。其他流程也是类似的。

  下面对设计降压转换器的过程稍加总结。选择完控制器IC后,再选择相应的外部器件。对每种选择方案来说,参数的重要程度是不一样的。选定MOSFET、输出电感器、输入和输出电容器后,再设计补偿电路。

  人们已经做了大量工作来设计一款良好的降压转换器,而且现在已经有了集成度更高的版本。有些设计集成了MOSFET,有些设计集成了补偿电路,还有的集成了输出电感器,比如Intersil的ISL8201M。用户所需要的只是设定输出电压的电阻、输入电容器和输出电容器,这对忙碌的系统设计者来说的确是个好消息。

关键字:设计降压  转换器 编辑:探路者 引用地址:设计降压转换器

上一篇:DC-DC转换器原理及应用
下一篇:高效率和超宽输入电压范围DC-DC变换器的设计方法

推荐阅读最新更新时间:2023-10-17 15:14

SEPIC PWM DC/DC转换器主电路组成和控制方式
  SEPIC PWM DC/DC转换器的输出电Uo的极性和输入电压Ui的极性相同(称为正极性输出)。与Zeta PWM DC/DC转换器相比,SEPIC转换器是将Zeta转换器的开关管V与电感L1的位置对调,将电感L2与二极管D的位置对调而成的,如图1(a)所示。因此SEPIC转换器是电感输入式转换器,类似于Boost转换器但输出电路却类似于Buck-Boost转换器,只是为正极性输出。由此可知,SEPIC转换器的输入电流脉动很小。SEPIC转换器的开关管V采用的也是PWM控制方式。如图2给出了Sepic转换器在不同开关模式下的等效电路。   如图1 SEPIC PWM转换器电路及其工作波形   如图2 不同
[电源管理]
SEPIC PWM DC/DC<font color='red'>转换器</font>主电路组成和控制方式
Vicor推出一款固定比率超高电压母线转换器
Vicor 母线转换器模块 (BCM) 阵营新增一款固定比率超高电压母线转换器(UHV BCM)。最新的 700V K=1/16 BCM 提供 1.75 kW 的输出功率及 97%的 峰值效率,功率密度高达 700W/in3。该器件采用具有良好散热性的 4414(111 毫米 x 36 毫米 x 9.3 毫米)VIA 封装,支持底座安装或电路板安装选项,能承受 4.3 kV 的隔离电压。这款坚固的 VIA 封装还集成 PMBus™ 通信、EMI 滤波以及电压瞬态保护功能。这些高度灵活的模块可轻松并联成各种更高功率的阵列。此外,BCM 输出还可串联,增大输出电压。 BCM 是系留无人机、水下机器人、配电系统及 3 相交流前端
[模拟电子]
白光LED升压转换器和电荷泵的比较
目前,便携式产品广泛使用彩色LCD显示器,用白光LED作为背光。为白光led供电需要特别的转换器,需要提供LED正向导通的高压和恒流驱动,减小电池电压变化时所引起的亮度变化以及不同LED之间的亮度不匹配。为了达到这个目的,有两种主流的转换器:基于电感的升压转换器和基于电容的电荷泵转换器。这两种转换器各具优缺点,需要根据系统的具体要求决定选用哪种架构。 本文以MAX1561升压转换器和MAX1573电荷泵为例,对两种转换架构进行比较。文中评估了每种转换器的优点,所得出的结论有助于系统设计者选择正确的方案。MAX1561和MAX1573几乎是在同一时期、在同一工厂、采用相同工艺设计的,开关频率均为1MHz,适合进行
[电源管理]
白光LED升压<font color='red'>转换器</font>和电荷泵的比较
多回路隔离型DC/DC分布电源转换器
FCS分布电源 产品按照国家电力行业标准(DL) DL/T614-2007的相关规定设计生产,在UPS/FCS控制柜、直流屏、智能电表、三相多功能电能表、配电负荷检测仪、电力负荷控制终端、用电管理终端等电力行业仪器仪表RS232/485通讯接口抗浪涌防静电高隔离接口电源上广泛应用。产品也适用于给多路传感器、仪器仪表、变送器、数控设备、电力监控、医疗设备等需要多个分布电源安全隔离的场合。   SunYuan  DIN 1X4 VDH系列(一进四出)五隔离DIN35导轨安装电源分配器,是一种将单路电源电压经隔离、分配、升降压转换成四路相互隔离的DC-DC转换器。产品能适应输出端长时间超低功耗静态空载环境,四路输出可为一致或分别不同的
[电源管理]
多回路隔离型DC/DC分布电源<font color='red'>转换器</font>
rs232/485转换器在办公场所与车间的工作原理
  在目前情况下rs232/485转换器通讯设备连接到CAN-bus现场总线向以太网靠拢,可以随时随地掌所握工业现场与企业运营状态,准确及时的了解所需的信息是关键,大幅度提高工作效率,实现成功决策。   计算机和网络技术的飞速发展,国内多数生产企业都相继建立了自己的计算机局域网络。您工作在一个高度办公自动化的环境中,您的PC可以随时上网,随时查询并与其他人交流信息,而另一方面您还需要随时随地了解在工厂的某个车间,需要有一套非常先进的监控系统,如利用UT-2506智能协议转换器可以快速将RS-232/485通讯设备连接到CAN-bus现场总线。帮助您了解该车间的生产状况,如机器的运转情况和产品的化学反应,包括监控系统可以收集大量
[嵌入式]
挑选rs232转rs485转换器
    很多的使用者去买通信产品的时候,只是单纯的说自己需要什么,不知道说一些专业的具体的型号之类的要求,rs485转换器" rs232转rs485转换器是使用比较普遍的,只是很多非专业的人士不是很了解怎么挑选。   产品的种类很多,如果不了解自己的需要,客服很难给您提供合适的产品,电源器有有源转换器和无源转换器之分。从产品稳定性和兼容性来讲,有源的比无源的更好、更强。从传输距离来讲:有源的比无源的传输更远,无源的最远传输1200M,有源最远可以达到5000M。   如需要的产品使用环境无任何干扰,那您可以使用普通的无源转换器即可,如使用环境干扰很厉害很复杂,那就建议您使用工业级有源带防雷和隔离保护的转换
[嵌入式]
利用TI NFC转换器轻松实现汽车信息娱乐系统的开发与配对
为了帮助设计人员轻松将NFC集成至汽车娱乐信息系统中,德州仪器(TI)(NASDAQ: TXN)日前宣布推出业内首款符合Q100汽车认证标准的动态双接口NFC转换器。 RF430CL330H-Q1转换器可以利用带外 (OOB) 关联模型在支持NFC的智能手机或平板与汽车信息娱乐系统之间实现Bluetooth 、Bluetooth Smart以及Wi-Fi 的简易安全配对 (SSP) 。当驾驶员进入汽车时,仅需要通过简单的一触式操作,即可配对、连接或执行支持NFC的Wi-Fi保密设置(WPS),从而配置特定的驾驶员设置,避免了复杂的手动操作流程。 经高度优化的NFC接口还可用作针对诊断数据的安
[汽车电子]
专为电动汽车应用而设计的DC/DC转换器
Tr ac o Power 的 DC/DC 转换器 专为电动汽车应用而设计,它不仅具备高度的性能和可靠性,还能适应各种复杂的应用场景,为电动汽车行业提供了理想的 电源 解决方案。 强大功率:可覆盖 1 至 300 瓦的功率范围,满足不同电动汽车应用的需求 骁勇耐用:即使在恶劣的环境条件下,也能保证多年的可靠性 高效散热:无需额外安装风扇即可正常运行,转换效率可达 90% 以上 广温适用:工作温度范围 -40°C 至 85°C,适用于各种环境 稳定输出:适用于需要保持恒定 电流 的应用场景 宽泛输入:适用于多种输入电压条件
[汽车电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved