一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。但是有很多的应用期望变换器能够处理更宽的输入电压范围。比如,在一些系统应用中分布式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。
作为一个例子,表1显示在不同铁路系统标准中分布式电压的稳态和瞬态范围。军用车辆设计规范也需要类似的宽输入电压范围,这样可以满足其分布式电压的变化。使用宽输入电压范围DC/DC变换器的另外一个原因是建立一个可以被用于不同直流系统的“通用”产品,对于标称值为12V, 24V和48V的电池系统,一般需要提供三个不同的输入电压版本,作为替代,一个能够在9V到75V工作的变换器提供了单一解决方案。这种单一方案可以节省生产成本和降低库存。
尽管人们期望有一款宽输入变换器,但存在一个主要问题:在传统产品中,模块工作的输入电压范围越宽,变换器的性能越差。一般来讲,在给定的尺寸,比如1/4砖,变换器的效率和能够处理的功率会随输入电压范围变宽而降低。这是一种自然结果,因为在设计最高输入电压的同时,还必须处理在输入电压最低时所带来的非常大的输入电流。对于2:1输入范围的变化器,其最大输入电压和最大输入电流的积是需要处理功率的两倍,这种结果作为一个合理的折中是可以接受的。但是,当一个变换器设计用来处理8:1输入范围时,其最大输入电压和最大输入电流的积是需要处理功率的8倍,这种结果是非常极端的。对与变换器隔离变压器相关的功率电路来讲是非常严重的。
由于上述的限制,在商业上没有很多DC/DC变换器能够处理很宽的输入电压范围,但少数“超宽”4:1输入的变换器在给定的物理尺寸下典型处理不到1/2的功率,这是与只有2:1输入电压输入范围的变换器在相同尺寸下所处理的功率相比。另外,宽输入变换器的转换效率一般比2:1输入变换器低10%-25%。
在宽输入范围变换器中减少这种损失的一种方法是将变换器的调整功能从其隔离功能中分离出来,如图1所示。在此图中,变换器的第一级是非隔离降压变换器,同时通过改变占空比进行电压调整功能。变换器的第二级提供没有任何电压调整的电气隔离功能,而且一般还可以根据变压器的变比进行进一步的降压。这就是SynQor作为高效DC/DC变换器的领先者如何设计其所有的产品。
这种两级设计的优势是只有第一级看到了输入电压的宽范围。当宽输入电压带来的损失必须要这个第一级承担时,但这种损失并不严重,因为第一级不需要隔离变压器。对于含有变压器的隔离级,则无需面对宽输入电压范围。在这种两级设计中,其输入电压作为两级方案中的中间总线电压一直是不变的。这就允许隔离级被优化为单一工作条件,而且使得隔离级非常容易实现基于同步整流的设计,这种同步整流设计可以极大地降低功耗。在隔离级效率地提升弥补在调整级发生的任何附加损失都大有帮助。
图2显示了SynQor新系列产品IQ64系列8:1超宽输入半砖DC/DC变换器。表2显示了SynQor新系列产品的不同输入电压范围。从表中可以看出,除了正常的2:1 输入范围,还有4:1 输入范围的产品,甚至8:1输入范围的产品。对于3.3V输出电压的最大功率等级和典型效率也显示在此表中。尽管随着输入电压范围变宽,其功率等级和效率存在一些降低,但是并不非常明显。这就是两级拓扑方案对功率电路设计的结果。
除了能够满足不同输入电压范围的需求,SynQor工业级DC/DC变换器InQor系列是全密封设计,非常坚固,能够应用于苛刻的环境,而这种环境时常伴随着有如此挑战性技术要求的系统。
关键字:高效率 超宽输入 电压范围 DC-DC
编辑:探路者 引用地址:高效率和超宽输入电压范围DC-DC变换器的设计方法
推荐阅读最新更新时间:2023-10-17 15:14
Vishay新款30V MOSFET具有高功率密度和高效率等特性
器件具有37.8A的连续漏极电流,导通电阻低至8.4mΩ,采用小尺寸PowerPAK® SC-70封装 据eeworld网消息,宾夕法尼亚、MALVERN — 2017 年 4 月25 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,发布新的30V N沟道TrenchFET® 第四代功率MOSFET---SiA468DJ,为移动设备、消费电子和电源提供了更高的功率密度和效率。Vishay Siliconix SiA468DJ采用超小尺寸PowerPAK® SC-70封装,是具有业内最低的导通电阻和最高的连续漏极电流的2mm x 2mm塑料封装的30V器件。 今天发布的MOS
[半导体设计/制造]
LLC谐振转换器可提升DC-DC效率
近年来,日益增长的电源需求已直接使得用数字控制实现AC-DC和DC-DC电源转换成为最新趋势。数字控制具备了设计灵活性、高性能和高可靠性。为了实现更高效的电源,人们正在考虑使用不同的拓扑结构实现DC-DC转换。本文将讨论电感、电感、电容(LLC)谐振转换器的数字控制、谐振转换器的优势以及数字控制的整体优势。 数字控制解决对电源的需求
由于许多电源在大部分时间内工作负载远低于最大负载或是工作效率最高时的负载,在正常模式和低功耗模式下,经常要求提高效率。例如,80 PLUS计划要求115V电源在20%、50%和100%的额定负载下至少达到80%的效率。在这些工作点实现更高效率可获得铜级、银级、黄金级或白金级的评级。对于230
[电源管理]
DC/DC设计原理、经验与应用技巧总结
“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的DC-DC转换器。这表示着新平台的功率密度、效率和热性能必须大幅提高。
众所周知,设计理想的DC-DC转换器涉及到众多权衡取舍。功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和PCB温度的提升。同样地,针对中等电流到峰值电流优化DC/DC电源,几乎也总是意味着牺牲轻载效率,反
[电源管理]
DC-DC升压IC测试及EN脚讲解
DC-DC是硬件开发过程中常用的一种器件,主要用于获取特定的直流电压,此处不对DC-DC的工作原理进行讲解,只对使用过程中发现的一个关于带EN脚的几款DC-DC升压IC的小问题进行展示。 下图所示为MT3608的应用电路图 其输出电压为可调值 ,通过R1与R2进行调节设置 其中EN脚即为IC的使能引脚 经过测试,得到如下结果: 测试设备:台式直流源 万用表 测试IC:MT3608(可调升压DC-DC IC) VIN设置3.93V 设计输出5.1V EN脚置地 输出脚电压为3.76V EN脚悬空 输出脚电压为4.73V EN脚接VCC 输出脚输出5.12V 下图所示为ME2188C50M5G的应用电路图 其输出电压为固定
[测试测量]
IR推出多功能IR3640M PWM控制IC
国际整流器公司 (International Rectifier,简称IR)推出IR3640M PWM控制IC。它适用于高效能的同步DC-DC降压应用,包括服务器、储存系统,网络通讯、游戏机,以及通用的DC-DC转换器。
IR3640M是一款单相位同步降压PWM控制器,拥有整合式MOSFET驱动器和自举二极管。新组件的单个环路电压式架构简化了设计,同时提供精确的输出电压调节和快速瞬变反应。 IR亚洲区销售副总裁潘大伟表示:「IR3640M是功能丰富的控制器,可以配合IR的DirectFET MOSFET来提供非常灵活和有效的解决方案。同时,它具备广阔的输入和输出电压范围,能够用于多
[电源管理]
MAX15026 :DC-DC同步buck控制器
MAX15026 同步降压控制器工作在4.5V至28V输入电压范围内,可产生调节范围为输入电压的85%到低至0.6V的输出电压,支持高达25A的负载电流。器件允许单调启动至预偏置而不对输出放电,并具有自适应的内部数字软启动功能。
MAX15026可通过外部电阻在200kHz至2MHz范围内调节开关频率。MAX15026的自适应同步整流无需外部续流肖特基二极管。该器件用外部低边MOSFET的导通电阻作为电流检测元件,省去了电流检测电阻。这样无需检流电阻即可在输出过载或输出短路故障情况下保护DC-DC元件不受损坏。打嗝模式限流降低了短路情况下的功耗。MAX15026包括一个电源就绪输出和一个具有精确开启/关断门限的
[电源管理]
TDK发布最紧凑、功率密度最高的负载点 DC-DC转换器
● 新系列µPOL™电源解决方案,以更高性能、最小尺寸、易于使用性和简化集成,开创了“电源管理解决方案的新时代”。 ● 可扩展和高度可配置的多次可编程内存,提供更大的灵活性。 ● 适用于大数据、机器学习、人工智能(AI)、5G基站、物联网(IoT)、企业计算等应用。 ● 在美国加利福尼亚州阿纳海姆举行的2019年APEC展会上首次发布。 (展会时间:3月18日至20日,TDK展位号:811号) TDK株式会社(TSE:6762)发布了新系列µPOL™ DC-DC转换器,这是业内最紧凑、功率密度最高的负载点解决方案,适用于大数据、机器学习、人工智能(AI)、5G基站、物联网(IoT)、企业计算等应用。 该系
[电源管理]
以超低电感器DCR 采样的电流模式开关电源实现高效率和高可靠性
当电流模式开关电源与电压模式开关电源相比时,前者有几种优势: (1) 高可靠性,具快速、逐周期电流采样和保护能力; (2) 简单和可靠的环路补偿,全部用陶瓷输出电容器就可稳定; (3) 在大电流多相 (PolyPhase®) 电源中易于实现准确的均流。在大电流应用中,电流采样组件中的功率损耗是一个令人担忧的问题,因此采样组件的电阻必须尽可能低。问题是低电阻采样组件会使信噪比降低,因此在大电流和高密度应用中,开关抖动就成了问题。
凌力尔特的 LTC3866 就解决了这个问题,使用该器件可以建立可靠和电流采样电阻 0.5mΩ 的电流模式开关电源。这款单相同步降压型控制器用内置栅极驱动器驱动所有 N 沟道电源 MOSFET 开关。该
[电源管理]