DC-DC转换器的电源转换效率和功率电感性能的解决方案

最新更新时间:2013-08-03来源: 与非网关键字:DC-DC转换器  电源转换效率  功率电感性能 手机看文章 扫描二维码
随时随地手机看文章

随着高新技术的不断研发,各种设备都已进入高端化,作为后备军,电源电路也有了较为明显的进步。具体来说,以典型的手机为例,除了原始的通话功能之外,相机、广播、电视等各种功能已经成为普遍标准的功能。这些功能的工作所需的电压各不相同,为此,电池电压必须通过电源转换电路将其电压转换成各电路正常工作所需电压。大多采用电源转换效率较高的开关控制器(通常称作DC-DC转换器)。

另外,在移动设备多功能化进程中,对机器的小型、薄型化要求也逐步提升。为此就必须减少元件的使用数量,或者将元件做到更小。此对策是借由提高DC-DC转换器的开关频率,减小必要的功率电感和电容的额定参数值,以此来适应元件的小型化。将集中控制电源的PMIC(PowerManagementIC)的开关频率,将从一直使用的1MHZ变为3MHz,还有管理单独电源的DC-DC转换器IC中主流频率一直是3~4MHz,对于此种情况,作为主要元件的功率电感就需要1.0uH到2.2uH的低感值产品。而开关频率数的提高使静噪成为必须,为了解决这些课题,推动了功率电感的开发。

手机电源电路功率电感的必要特性

在此阐述多功能小型手机的电源电路对功率电感的形状和特性的要求。主要有以下三项。

体积小,厚度薄

拥有能够适应电源电路高电源转换效率的特性

在电源工作状态下拥有抗噪声能力

接下来就村田制作所开发的,具备以上性能的功率电感的性能作说明。

针对小型电源电路开发的叠层型功率电感

对应小型、薄型需要的功率电感及其主要性能

村田制作所开发了对应电源电路小型化需求的叠层型功率电感LQM2HP(2520尺寸)、LQM2MP(2016尺寸)系列,并投入量产。这些功率电感都是符合集合PMIC和电源供给端的基带IC等1.0mm厚封装趋势的超薄设计。外形如图1所示。

 



图1-2:LQM2MP外形

通过直流电流后感值偏执特性良好,可以作为各功率电感的特长。电流-感值偏执特性是指功率电感通电时,电流变大引起感值下降的性质。这是叠层型功率电感的封闭磁路构造导致的磁通量饱和引起的,因此为了克服这个弱点,开发新技术以降低叠层铁氧体中的磁通量分布,从而改善电流的叠加特性,最后反映在各个产品上。

表1是各产品的主要特性,表二则是电流-感值偏执特性。

品名感值

(μH)感值测定频率

(MHz)额定电流

(mA)直流电阻

(Ω)

LQM2HPNR47MG0 0.47±20% 1 1800 0.040±25%

LQM2HPN1R0MG0 1.0±20% 1600 0.055±25%

LQM2HPN1R5MG0 1.5±20% 1500 0.07±25%

LQM2HPN2R2MG0 2.2±20% 1300 0.08±25%

LQM2HPN3R3MG0 3.3±20% 1200 0.10±25%

LQM2HPN4R7MG0 4.7±20% 1100 0.11±25%

品名感值

(μH)感值测定频率

(MHz)额定电流

(mA)直流阻抗

(Ω)

LQM2MPNR47MG0 0.47±30% 1 1600 0.060±25%

LQM2MPN1R0MG0 1.0±30% 1400 0.085±25%

LQM2MPN1R5MG0 1.5±30% 1200 0.11±25%

LQM2MPN2R2MG0 2.2±30% 1200 0.11±25%

 



图2:电流叠加感值特性

--------------------------------------------------------------------------------

电源电路(DC-DC转换器)的高电力变换效率特性

DC-DC转换器的电源转换效率和功率电感性能之间的关联如图3所示。PFM是指手机在待机状态下保持低电流负荷的模式,这时电源转换效率性能是与功率电感的Rac(交流电阻)以及电流-感值偏执特性相关。图4当中显示了各功率电感的Rac特性以及图5中开关频率数是4MHz的DC-DC转换器IC的电源转换效率特性。如同图4中显示的Rac特性,LQM系列产品能够充分抑制Rac.同时,图2的电流-感值偏执特性中显示,它在电流通电时也能确保高感值,拥有良好的电力变换效率特性。这些性能能够实现手机在待机状态下的高电力变换效率,对延长电池寿命做出贡献。

另一方面,PWM模式指相当于通话状态的高电流负荷状态,此模式与电感的Rdc特性(直流阻抗)有关,具有低Rdc性能的LQM系列在此领域具有良好的电源转换效率。

 



图3:电源转换效率特性和电感特性的相关性

 



图4:Rac特性

 



图5:电源转换率数据(4MHzDC-DC转换器IC使用)抗噪性能的对策

手机的电源电路中使用DC-DC转换器,使用的功率电感的磁束泄漏可能会诱发电源电路的不稳定,给电路造成不好的影响。这些问题可以通过使用磁束泄漏较少的叠层型功率电感来解决,可以阻止噪音干扰使电源电路保持稳定。另外,磁束泄漏少还能够使电源电路和周边的信号线等的电磁耦合减弱,抑制噪音诱发的信号纯度劣化。图6显示了绕线型功率电感和叠层型功率电感的磁束泄漏监测数据。与一直以来作为DC-DC转换器上使用的主要功率电感的绕线型功率电感相比,叠层型功率电感的磁束泄漏更少,现已证实闭合磁路的构造使磁束泄漏较少。这些数据表明在小型高速开关DC-DC转换器电路中使用小型叠层型功率电感的情况下,能够发挥它抗噪特性的特长。

 



图6:叠层型功率电感和绕线型功率电感的磁束泄漏比较

小结

便携设备的小型、薄型化需求促使搭载于上的元器件尺寸也必须越来越小。电源电路中的DC-DC转换器的小型、薄型化可以使开关频率更高,周围元件更小型化。村田制作所在对小型叠层型功率电感商品的开发过程中,制造除了具有优良的电流-感值偏执特性,在通电状态下的磁束泄漏量较少的1008和0806尺寸产品。今后将更进一步开发更加小型化的0805和0603尺寸叠层型功率电感,为便携设备的高性能小型电源电路设计做贡献。

关键字:DC-DC转换器  电源转换效率  功率电感性能 编辑:探路者 引用地址:DC-DC转换器的电源转换效率和功率电感性能的解决方案

上一篇:适用于高频电流模式转换器的斜坡补偿电路的设计与实现
下一篇:精密SAR模数转换器的前端放大器和RC滤波器设计

推荐阅读最新更新时间:2023-10-12 22:23

多频技术改进数字电源转换效率并缩短设计周期
几十年来, 电源转换器 拓扑结构一直以模拟技术为基础。虽然大多数转换器采用开关技术和脉宽调制(PWM),但出于功率半导体器件在处理层面上的兼容,以及成本效益的考虑,电路构成主要为模拟。不过,这种情况正在改变。在显着提高数据中心和电信系统效率的过程中,模拟技术及其电路暴露出自身的缺点。 数字电源管理和控制提供实时智能,便于系统开发人员构建电源系统自动适应运行环境的变化,并优化每种特定应用场合的效率。智能数字电源IC可以自动补偿负载和系统温度的变化,利用自适应死区时间控制、动态电压调节、频移、相数降低和电流不连续模式的切换来实现节能。 数字电源给人造成费用高的感觉一直是其被快速接受的一个障碍,不过,最新推出的器件正在迅速消
[电源管理]
多频技术改进数字<font color='red'>电源转换</font><font color='red'>效率</font>并缩短设计周期
解惑“永动机”:电源转换效率达230%的LED技术
  据美国媒体近日报导,美国麻省理工学院(MIT)的研究人员通过一种插座转换设备使发光二极管(LED)能够比其消耗的电功率释放出更多光功率,电源转换效率可达到100%以上。   LED发光原理是将电能转换为光。目前,设计出既明亮又高效的LED灯的最大障碍之一,是增加LED灯的输出功率反而导致其效率下降。而麻省理工学院的研究人员解释说,他们的研究成果大大降低了外施的电压。根据计算,当电压减少到一半,输入功率降低了4倍,而发出的光功率与电压保持一致,也达到一半。换言之,当输出功率下降时LED发光率却在增加。      在实验中,研究人员减少了LED的输入功率,仅30皮瓦,而测量到输出达69皮瓦的光量,效率高达230%
[电源管理]
解惑“永动机”:<font color='red'>电源转换</font><font color='red'>效率</font>达230%的LED技术
DC-DC转换器的电磁兼容技术
引言 DC-DC转换器是通信系统的动力之源,已在通信领域中达到广泛应用。由于具有高频率、宽频带和大功率密度,它自身就是一个强大的电磁干扰(EMI)源,严重时会导致周围的电子设备功能紊乱,使通信系统传输数据错误、出现异常的停机和报警等,造成不可弥补的后果;同时,DC-DC转换器本身也置身于周围电磁环境中,对周围的电磁干扰也很敏感(EMS),如果没有很好的抗电磁干扰能力,它也就不可能正常工作。因此,营造一种良好的电磁兼容(EMC)环境,是确保电子设备正常工作的前提,且也成为电子产品设计者的重要考虑因素。 DC-DC转换器EMC特点 DC-DC转换器具有体积小、功率密度大、工作频率高等特点,这些特点直接导致电源内部电磁环境复杂,同时也带来
[电源管理]
DC-DC转换器和LDO驱动ADC电源输入
在《DC-DC转换器与ADC电源接口》中,讨论了使用DC-DC转换器(开关调节器)以及LDO来驱动ADC电源输入的情况。 使用DC-DC转换器对LDO的输入电压进行降压操作是驱动ADC电源输入的一个极为有效的方式。 回忆一下拓扑结构,如下图1所示。 输入电源电压为5.0 V,该电压降压至2.5 V,然后输入LDO;LDO输出为1.8 V,作为ADC电源电压。 图1 .采用DC-DC转换器和LDO驱动ADC电源输入 ADC基频输入信号音周围可能存在的杂散。 这些开关杂散的位置取决于DC-DC转换器的开关频率以及ADC的输入频率。 开关杂散会与输入信号相混合,而杂散会在fIN fSW和
[电源管理]
<font color='red'>DC-DC</font><font color='red'>转换器</font>和LDO驱动ADC电源输入
DC-DC转换器初级电流检测方法
  引言   在开关电源设计中,很重要的一项内容是过载保护功能的设计,尤其是在空间领域,由于其高可靠、高风险、不可维修的特性,使得空间用DC-DC转换器要具备可靠的过载保护功能。   过载保护功能是指在负载过载情况下,能有效保护DC-DC转换器不会因过热而损坏。由于用电负载不同,对过载保护功能要求也不同。控制系统要求过载后DC-DC转换器不能断电,其采取限流保护;有效载荷系统要求可以在过载后DC-DC转换器断电,其采取截流保护。   设计过载保护就需要检测电路中的电流,DC-DC转换器的电流取样可以直接检测输出回路的电流,例如次级整流回路的电流;也可以检测初级回路的电流,例如流过功率MOSFET管的电流。   电流检测的一般方式
[电源管理]
<font color='red'>DC-DC</font><font color='red'>转换器</font>初级电流检测方法
具有多种电平输出的DC-DC转换器
摘要: NJU7660是New Japan Radio公司生产的带RC振荡器的电平转换器。它具有电平移动和倍压功能。文中介绍了NJU7660的电平转换、倍压输出、2N倍压输出等功能,并给出了多种典型应用电路。 关键词: 电平转换 倍压 NJU7660 1 NJU7660简介 NJU7660是New Japan Rodio公司生产的一个带RC振荡器的电平转换器(DC-DC),它具有电平移动和倍压功能。其典型应用电路最多只需外接两个电容、两个电阻和一个二极管即可。它采用CMOS结构,功耗非常低。几片NJU7660串联可实现N倍、2N倍、(2N-1)倍等电平转换。NJU7660的内部结构和引脚排列如图1所示
[电源管理]
具有多输入选择的电源设计
现场通讯设备等的电子系统必须能在各种电源情况下工作,如全世界通用的交流(85-264V rms)或是汽车电源,这些系统在主电源被切断时也还需要备用电源维持系统的工作。下图所示为一个既能利用交流电源,也能利用12V 或 24V 汽车电源,还可以在 48V 备用电源下工作的电源。 对于利用交流电的情况,通用交流输入从前端模块输入,并进行功率因子校正。该模块将提供高精度的 48V 输出的高功率转换器馈给负载转换器。当采用交流供电时,48V 转换器还可上调到25V 电压用以给备用电池充电。 负载转换器允许输入范围为21至56V (标称值为 36V),可使电源从交流电源或备用电源上接受 48V,或从汽车电源接受 24V。这样的输入范围避免了
[电源管理]
具有多输入选择的电源设计
电源模块中DC-DC转换器低电磁干扰设计的折中方法
电源 设计中即使是普通的直流到直流开关 转换器 的设计都会出现一系列问题,尤其在高功率电源设计中更是如此。除功能性考虑以外,工程师必须保证设计的鲁棒性,以符合成本目标要求以及热性能和空间限制,当然同时还要保证设计的进度。另外,出于产品规范和系统性能的考虑,电源产生的 电磁干扰 (EMI)必须足够低。不过,电源的 电磁干扰 水平却是设计中最难精确预计的项目。有些人甚至认为这简直是不可能的,设计人员能做的最多就是在设计中进行充分考虑,尤其在布局时。 尽管本文所讨论的原理适用于广泛的电源设计,但我们在此只关注直流到直流的 转换器 ,因为它的应用相当广泛,几乎每一位硬件工程师都会接触到与它相关的工作,说不定什么时候就必须设计一个电源转换
[电源管理]
电源模块中<font color='red'>DC-DC</font><font color='red'>转换器</font>低电磁干扰设计的折中方法
小广播
热门活动
换一批
更多
最新电源管理文章
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved