充电芯片SE9018的电池线性充电方案

最新更新时间:2014-01-24来源: 电源网关键字:充电芯片  SE9018  电池线性 手机看文章 扫描二维码
随时随地手机看文章

相对于其他类型电池,锂离子电池在性能优异的同时也对充电器提出了更高的要求,这些要求主要体现在充电过程的控制和锂电池保护方面,具体表现为较大的充电电流、高精度的充电电压、分阶段的充电模式和完善的保护电路等。随着现代电子技术的发展,电子设备日益趋于便携化、多功能化,因此也对它们的供电电池提出了轻便、高效的要求。锂离子电池以其能量密度高、充放电性能优异、无污染等特点逐渐取代传统的镍镉、镍氢电池、铅酸电池被广泛应用于现代便携式电子产品中。本文讨论使用大电流锂离子电池充电芯片SE9018设计锂离子电池线性充电方案。

芯片介绍

SE9018是一款恒流/恒压模式的锂离子电池线性充电芯片,采用内部PMOSFET架构,并集成有防倒充电路,不需要外部隔离二极管。

芯片预设充饱电压为4.2V,精度为±1.5%,充电电流可通过外部电阻进行设置,最大持续充电电流可达1A。当芯片由于工作功率大、环境温度高或PCB散热性能差等原因导致结温高于140℃时,内部热反馈电路会自动减小充电电流,将芯片温度控制在安全范围之内。为使芯片能够维持高效工作状态,应采取措施尽量降低芯片工作功率和芯片温度,例如输入端串联小电阻(降低输入电压)、增大PCB散热铜箔面积、使芯片散热片与PCB铜箔充分接触等。

 

图1 SE9018脚位图 

图2 SE9018原理图

SE9018内部集成电池温度监测电路,当电池温度超出正常范围(过高或过低)时,芯片自动停止充电过程,防止电池因为温度过高或过低而损伤。

电池温度监测是通过判断TEMP端电压(VTEMP)实现的,VTEMP由一个包括电池内部NTC热敏电阻在内的电阻分压网络提供。

当VTEMP处于45%×VCC与80%×VCC之间时,芯片判断电池温度处于正常范围内;当VTEMP < 45%×VCC或VTEMP > 80%×VCC时,芯片判断电池温度过高或过低;当TEMP端接地时,电池温度监测功能被禁用。

SE9018包含两个漏极开路的状态指示输出端CHRG和STDBY,当电路处于充电状态时,CHRG端置低电平,STDBY端为高阻态;当电池充饱时,CHRG端变为高阻态,STDBY端置低电平。当电池温度监测功能正常使用时,如果芯片未连接电池或电池温度超出正常范围,CHRG端和STDBY端均为高阻态;当电池温度监测功能被禁用时,如果芯片未连接电池,STDBY端为低电平,CHRG端输出脉冲信号。

SE9018的其他功能包括手动停机、欠压闭锁、自动再充电等。典型的基于SE9018的锂离子电池充电电路如图3所示。CE端为高电平时,SE9018正常工作。

 

图3 SE9018典型应用电路

1.充电电流的设置

恒流充电过程中的充电电流Ibat由PORG端与GND端之间的电阻Rprog设定,Ibat与Rprog阻值的关系为:

公式1 

例如,如果想得到1A的恒定充电电流,根据公式1可得Rprog=1200Ω。

2.电池温度监测电路设置

电池温度监测电路的设置主要是对R1和R2进行设置,假设NTC热敏电阻在最低工作温度时的电阻为RTL,在最高工作温度时的电阻为RTH(RTL与RTH的数据可查相关电池手册或通过实验得到),则R1,R2的阻值分别为:

公式2 

公式3在实际应用中,如果只需要高温保护,不需要低温保护,可以将R2去掉。此时,R1的阻值为:

公式4 

3.手动停机设置

在充电过程中,可随时通过置CE端为低电平或去掉Rprog(PROG端浮置)将SE9018置于停机状态,此时电池漏电流降至2uA以下,输入电流降至70uA以下。

4.欠压闭锁状态

若输入电压VCC低于欠压锁定阈值或VCC与电池电压Vbat之差小于120mV,SE9018处于欠压闭锁状态。

当芯片处于停机状态或欠压闭锁状态时,CHRG端与STDBY端均为高阻态。

5.正常充电工作周期

当SE9018的各输入端与电池均处于正常状态时,充电电路进入正常充电周期,此周期包括四种基本工作模式:涓流充电、恒流充电、恒压充电、充电结束与再充电。

若电池电压Vbat低于2.9V,充电电路进入涓流充电模式,此时充电电流为恒流充电电流的十分之一(如果恒流充电电流被设置为1A,则涓流充电电流为100mA),涓流充电状态会一直保持到电池电压Vbat达到2.9V。涓流充电模式主要是为了避免电池电压太低时大电流冲击给电池内部结构带来的损害。

电池电压高于2.9V但小于预设充饱电压4.2V时,充电电路处于恒流充电模式,如上所述,充电电流由Rprog确定。

电池电压达到4.2V时,充电电路进入恒压充电模式,此时BAT端电压维持在4.2V,充电电流逐渐减小。此过程的主要作用是减小电池内阻对于充饱电压的影响,使电池充电更加充分。

当充电电流减小至恒流充电电流的1/10时,充电电路停止向电池充电并进入低功耗的待机状态。在待机状态时,SE9018会持续监测电池电压,如果电池电压降至4.05V以下,充电电路会再次对电池进行充电。6. 指示灯状态

表1

 

7.兼容USB电源与适配器电源的电路

同时,使用SE9018芯片可以实现适用于USB电源和适配器电源的充电电路,电路图如图4所示。

 

图4 USB与适配器方案

使用USB电源供电时,PMOS与NMOS栅极被下拉至低电位,PMOS导通, USB电源对SE9018进行供电,SCHOTTKY二极管防止USB端向适配器端漏电。NMOS截止,Rp1被断开,Rprog = 2.4kΩ,恒流充电电流为500mA。

使用5V适配器进行供电时,PMOS与NMOS栅极为高电位,PMOS截止,防止适配器端向USB端漏电,适配器5V电压通过SCHOTTKY二极管对SE9018进行供电。NMOS导通,Rp1被接入电路中,此时Rprog为Rp1与2.4kΩ电阻并联,通过设置Rp1,可以实现大于500mA的恒流充电电流。

在目前的便携式产品中,要正确地实现电池充电需要仔细地设计考虑。本文讨论了智能大电流锂离子电池线性充电解决方案,使用的SE9018芯片具有充电速度快、对电池保护功能强、外围元器件数目较少等特点,而且该芯片还适合USB电源和适配器电源工作,是较为实用的智能大电流锂离子电池充电芯片。

关键字:充电芯片  SE9018  电池线性 编辑:探路者 引用地址:充电芯片SE9018的电池线性充电方案

上一篇:开关电源针对ADC的性能的影响
下一篇:网友DIY:小功率太阳能充电控制器设计

推荐阅读最新更新时间:2023-10-12 22:35

意法半导体(ST)先进无线充电芯片让手机和平板充电速度更快
意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM) 开启移动设备无线充电时代 ,推出世界首个支持业内最新的更快的移动设备充电标准的无线充电控制器芯片。 今天,手机和平板的使用强度很大,每天都需要多次充电。有了无线充电技术,用户外出无需随身携带充电器或体积庞大的充电宝,而且充电速度和传统有线充电一样快。主要的移动设备厂商纷纷开始支持无线充电技术,加入了无线充电行业联盟,并推出了无线充电手机。 经常外出的用户需要他们的设备随时恢复到充足电量,有了无线充电技术,他们就可以在休息或会议期间,把移动设备放下充几分钟电。为实现这个功能,广泛采用的Qi标准的管理者无线充电联盟(WPC)推出了充电更
[手机便携]
意法半导体(ST)先进无线<font color='red'>充电</font><font color='red'>芯片</font>让手机和平板<font color='red'>充电</font>速度更快
意法无线充电芯片支持Qi Extended Power标准
意法半导体(ST)开启行动装置无线充电时代,推出支持最新行动装置充电标准的无线充电控制器芯片。 意法半导体工业和功率转换产品部总经理Domenico Arrigo表示,该公司先进无线充电芯片让装置商能够研发兼具功能和效能的新款大功率产品。 支持Qi Extended Power标准可大幅缩短充电时间,该公司存在检测专利技术和安全创新功能可大幅提升充电安全性和易用性。 经常外出的用户需要将其装置随时恢复到足够的电量,有了无线充电技术,就可以在休息或会议期间,让行动装置充电。 为实现这个功能,广泛采用Qi标准的无线充电联盟(Wireless Power Consortium, WPC)推出充电更快的Extended Power Pro
[半导体设计/制造]
智能单片线性锂离子电池充电器IC设计
摘要:锂离子电池由于体积小、重量轻、能量密度高和循环寿命长等优点,在便携式设备中得到了广泛的应用,由于锂离子电池的使用寿命与锂离子电池充电器的充电方法密切相关,充电器必须安全、快速、效率高.考虑到IC的成本,采用CMOS工艺设计了一款具有智能热调整功能的单片线性钽离子电池充电器IC,在此设计的线性锂离子电池充电器IC在恒流/恒压充电模式的基础上,增加了涓流充电模式和智能热调整模式。 关键词:线性充电器;锂离子电池;恒流充电;恒压充电;智能热调整     锂离子和锂聚合物电池具有工作电压高、无记忆效应、工作温度范围宽、自放电率低及比能量高优点。使其能够较好地满足便携式设备对电源小型化、轻量化、长工作时间和长循环寿命以及对环境无害等要
[电源管理]
智能单片<font color='red'>线性</font>锂离子<font color='red'>电池</font><font color='red'>充电</font>器IC设计
单片线性锂离子电池充电器IC设计与实现
  锂离子和锂聚合物电池具有工作电压高、无记忆效应、工作温度范围宽、自放电率低及比能量高优点。使其能够较好地满足便携式设备对 电源 小型化、轻量化、长工作时间和长循环寿命以及对环境无害等要求,同时随着锂离子电池产量的提高,成本的降低,锂离子电池以其卓越的高性价比优势在便携式设备电源上取得了主导地位,这也使得锂离子电池充电器得到了巨大的发展和广阔的市场。本文设计一款针对单节锂电池的线性充电器IC.该IC采用涓流-恒流-恒压三阶段充电法对充电过程进行控制。   1 线性锂离子电池充电器的整体结构设计   图1所示为本文锂离子电池充电器的整体功能模块图。这些子模块包括。基准电压源、基准电流源、欠压闭锁模块、恒流充电放大器、恒
[电源管理]
单片<font color='red'>线性</font>锂离子<font color='red'>电池</font><font color='red'>充电</font>器IC设计与实现
支持热调节和输入过压保护功能的安全增强型线性电池充电
1 电池的充电要求 充电曲线适用于锂离子电池充电,它包括3个充电阶段:预充阶段、快充恒流(CC)阶段、恒压(CV)终止阶段。在预充阶段,在电池电压低于3.0 V时,电池以较低速率充电。通常情况下,当电池电压达到3.0 V,充电器就会进入CC阶段。快速充电阶段CC通常限制在1 C电池额定值以下。如果充电率超过1 C,那么电池使用寿命就会缩短,因为节点上积存的金属锂会与电解质发生反应,造成永久损失。最后,充电器会进入CV阶段,这时它将保持峰值电池电压,并在充电电流下降到预定义大小时终止充电。 电池容量是电池电压的函数,电压越高,容量就越大。不过,如果电池电压升高,就会导致电池使用寿命缩短。例如,如果用4.3 V电压给电池充电,那么容
[电源管理]
支持热调节和输入过压保护功能的安全增强型<font color='red'>线性</font>锂<font color='red'>电池</font><font color='red'>充电</font>器
电池监测芯片实现多功能智能充电
1 概述 电动车的储能技术(蓄电池)、能量转换技术(充放电控制装置)是两项重大技术关键,而储能和驱动效果的优劣,取决于能量转换技术的先进程度,同时也决定了电动车的实用性、可靠性、经济性以及市场竞争能力。而影响蓄电池容量和寿命的因素,除了蓄电池本身的原理、设计、材料、工艺以外,另一个关键的技术是蓄电池的充电技术。电池充电过程对电池实际里程寿命的影响最大,放电过程的保护、限流、控制器的能量回收以及驱动部分效率的提高占的比例较小。也就是说,绝大多数的电池提前报废,是充电方法不当而充坏的。因此,研制和开发高水平、高性能、高质量的电动车充电器,是促进我国电动车技术和产业化发展的重要一环。 2 多功能智能充电器的设计思想 智能充电器与传统的充
[电源管理]
用<font color='red'>电池</font>监测<font color='red'>芯片</font>实现多功能智能<font color='red'>充电</font>器
芯片USB锂离子/聚合物电池充电器解决方案
    目前市场上相当多的超薄便携式应用采用单节锂离子/聚合物电池,它们要求一个全功能的、可靠的电池充电器,它能够提供很好的功能、非常小的体积、非常好的性价比、以及灵活性。AAT3681A可满足以上所有要求,而且只需要一个外部元件。   AAT3681A的封装尺寸非常小,只有2.0×2.1mm,这使得它非常适合便携式和超便携式应用。这一器件是即插即用型充电器设计师能够得到的最理想器件,它可以帮助设计师节省设计和PCB布板时间,也有助于将产品快速推向市场。   AnalogicTech可提供专为便携式和手持式电池供电应用设计的大量电源转换解决方案。一个成功设计的最重要特征之一是,器件与目标应用之间的匹配是非常完美的。  
[嵌入式]
芯片技术在充电桩中的应用
导读 随着环保意识的不断提高和能源问题的日益凸显,电动车作为一种清洁、高效、低排放的交通工具,正逐渐走进人们的生活。而电动车的普及和发展,离不开充电技术的支持。在充电桩领域,芯片技术的应用正发挥着关键性作用。 1 充电桩的发展背景 随着电动车辆的销量逐年攀升,充电基础设施的建设成为推动电动车普及的关键。传统的充电桩只能提供简单的充电功能,缺乏智能化、安全性、互联互通等特点,已经不能满足不断增长的电动车用户需求。因此,寻求更先进、更高效、更智能的充电技术势在必行。 2 芯片技术在充电桩中的应用 智能充电管理 芯片技术在充电桩中的应用,使得充电桩能够实现智能充电管理。通过嵌入式芯片,充电桩可以感知电动车的充电状态、电池容量、车
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved