马达控制三相变频器中相电流Shunt 检测电路设计

最新更新时间:2014-07-12来源: 21IC关键字:马达控制  三相变频器 手机看文章 扫描二维码
随时随地手机看文章

摘要

随着诸如能源之星等节能标准在家电,医疗,电动车等市场的接收和推广,以磁场定向控制(FOC)算法为基础的高能效三相变频器广泛用于各类交流电机驱动应用中。FOC 算法需 要精确检测三相电流,Shunt 电流检测电路因其成本低精度较高取得了广泛应用。本文将探讨 shunt 电流检测电路设计及不同 Shunt 电流检测电路对运算放大器的要求。

概述

磁场定向控制算法(FOC, Field Oriented Control)通过一系列的前向Clarke运算和Park运算将检测得到交流电机的三相相电流处理,间接得到转矩分量和磁通分量,经过经典的PI算法对其进行精确控制, 从而保证电机能以最佳的扭矩高效运行,实现精确的速度变化控制,算法框图如图1。由此可知,相电流 检测的精度是决定整个电机控制性能的一个重要因素。一般来说,相电流检测共有闭环霍尔,Shunt电阻, 开环霍尔三种方式。Shunt电阻因其精度较高(全温范围校正后精度2%至5%),成本低而得到广泛应用。

1 Shunt 电流检测电路设计

图1 磁场定向控制算法框图

常用的Shunt电流检测电路如图2所示。Shunt电阻将电机的相电流转化为相电压,经过RC低通滤波,偏置电压预置之后经过运放放大,输出给MCU(如TI的C28xx系列)内部12bit ADC。

图2 常用Shunt电阻电流检测电路原理图

对于RC低通滤波部分,该滤波器可显着减小功率部分的开关噪声,提高相电流检测精度。但是该滤 波器并不能采用高阶滤波器,一是成本考虑,二是高阶滤波器虽然衰减效果更好,但是滤波器群延时也相 应显著增加,限制了可检测相电流的最小PWM占空比,降低FOC系统控制精度,一般来说,滤波电路不宜高于2阶,RC常数取在100ns到200ns之间。

因为相电流方向可正可负,所以Shunt电压也带有极性,而一般MCU内部ADC并非双极性ADC,所以

在滤波电路之后有一个电阻分压偏置电路将电压转化为单极性。经过一级放大器之后得到动态范围扩展至 电源轨的信号,以提高信噪比。

影响Shunt电流检测精度的因素主要来自于Shunt电阻精度及其温漂,运算放大器偏置电压及其温漂,运算放大器非线性误差及其温漂。可见,要想提高Shunt电流检测精度,一颗性能较好的运算放大器必不 可少。同时Shunt电阻检测方式可根据Shunt电阻个数分为三类,1-Shunt, 2-Shunt和3-Shunt。不同的检测 方式对运放的压摆率(Slew Rate)有不同的要求。压摆率是衡量运算放大器输出电压变化速率的重要参数, 单位是V/us,其定义如公式1所示,

例如一个运放的输出信号是频率为f幅值为V p 的正弦信号,则该运放的压摆率SlewRate = 2πfVp,如果输 出信号是一个频率为f幅值为V p 的三角波信号,则该运放的压摆率SlewRate = 2fVp。

在Shunt电阻电流检测电路的PCB设计上,有几点需要注意:

1 RC低通滤波电路应尽可能靠近运放侧。

2 Shunt电阻的功率侧接地走线应该尽可能粗短而且不要有过孔。因为IGBT的开关会引起较大的阶跃电流 di/dt, 而阶跃电流di/dt会通过走线或过孔产生的感生电感产生感生电压,造成较大的过冲,影响电流检测 精度。如果有过孔,采用多过孔设计,一方面感生电感的并联会减小总体感生电感,另一方面通过多个过孔增强可通过电流。

2 1-Shunt 电流检测

1-Shunt电流检测采用一个放置在母线上Shunt电阻来分时检测ABC三相相电流。因其低成本广泛用于如空调压缩机控制等家电领域中, 如图3所示

图3 1-Shunt电流检测原理

常用电机控制中,PWM频率一般是10KHz到20KHz,以20KHz为例,一个PWM周期为50us。在50us里需要检测三相电流,所以每相相电流检测窗口时间是50/3us乘以PWM占空比。一般电机控制系统中最小 PWM占空比常常定义为5%,所以每相相电流检测窗口时间最小为50/3us×5%=0.83us。而在程序控制中 ADC采样时刻常控制在这个相电流检测窗口正中间,所以对于Shunt电流检测电路来说,必须在ADC采样 时刻之前稳定,完成电压信号的建立稳定。具体来说如图3所示,此时间主要包含两个时间,上升沿时间(Tsr,由运放的压摆率决定)和稳定时间(Tset)。假设上升沿时间占相电流检测窗口的20%,即20%×0.83us=0.167us,那么对于一个3.3V的MCU,运放最小压摆率SR=3.3V/0.167us=19.76V/us。同时运放的带宽应远大于PWM频率,至少10倍以上。

3 2-Shunt电流检测

对于2-Shunt电流检测来说,2个Shunt电阻分别置于2相,如A,B,那么C相电流就可以通过2相电流计 算出来,如图4所示。

图4 2-Shunt电流检测原理

所以与1-Shunt电流检测相比,2-Shunt电流检测不需要利用分时检测。所以其每相相电流检测窗口时间最小值是1-Shunt的3倍,即压摆率应为1-Shunt方式的1/3。所以对于一个PWM频率10KHz,5%最小占空比,3.3V的MCU系统来说,运放的压摆率SR=3.3V/0.48us=6.9V/us。

4 3-Shunt电流检测

3-Shunt电流检测即利用3个Shunt电阻检测ABC三相相电流。因为任意两相电流都可以计算出第三相电流,而且在一个PWM周期里,最小PWM占空比只能出现在某一相,所以在一个PWM周期里,出现最小 PWM占空比的相电流可以不检测而通过其他两相计算得到。这就意味着每相相电流检测窗口时间没有了最小PWM占空比的限制。另外,当电机控制系统零电位参考取负母线电压时有

其中Vdc为母线电压。所以三相占空比之和应为1.5。若C相出现最小占空比5%,那么A相占空比与B相占空比之和为1.45。因为各相占空比最大为1,所以假设A相占空比达到最大值,则B相占空比达到最小值, 即45%,此时B相相电流检测窗口时间达到最小值。对于一个PWM频率20KHz的马达系统,此时B相相电

流检测窗口时间为50us×45%=22.5us。那么对于一个3.3V的MCU系统来说,还是假定上升沿时间占相电流检测窗口的20%,则运放的压摆率SR=3.3V/(22.5us×20%)=0.73V/us。

结论

Shunt电流检测广泛应用于各类交流电机控制器中。不同的Shunt电流检测方式对电路中运放的压摆率参数 要求不一样,该参数跟控制系统中的PWM频率,最小占空比有关。由本文可知,在其他参数相同情况下,

例如当PWM频率为20KHz,最小占空比为5%和上升沿时间占相电流检测窗口的20%情况下,三种Shunt电 流检测电路中运放的压摆率最小值如表1所示。

参考文献

1. Field Oriented Control by Wikipedia, http://en.wikipedia.org/wiki/Field-oriented_control

2. OPA141 器件手册,http://www.ti.com/lit/ds/symlink/opa141.pdf

3. TLV2772 器件手册,http://www.ti.com/lit/ds/symlink/tlv2772.pdf

4. TLC2274 器件手册,http://www.ti.com/lit/ds/symlink/tlc2274.pdf

5. Predicting Op Amp Slew Rate Limited Response,

http://www.ti.com/lit/an/snoa852/snoa852.pdf

关键字:马达控制  三相变频器 编辑:探路者 引用地址:马达控制三相变频器中相电流Shunt 检测电路设计

上一篇:差分输入/输出低功耗仪表放大器
下一篇:如何降低肖特基PIN限幅器损耗

推荐阅读最新更新时间:2023-10-12 22:42

利用完全可编程平台实现高效的马达控制
环保一直是备受关注的话题,为了实现低碳生活,发达国家的政府以税费的方式来降低碳排放和能源使用。超过半数的电力用于驱动电动机,因此设计人员不是应该而是必须采用更加高效的电机控制与设计。 本文将介绍综合运用磁场定向控制(FOC)算法和脉冲频率调制(PFM)严密地控制电机,实现高精度与高效率。 磁场定向控制(FOC)算法 标量控制(或者常称的电压/频率控制)是一种简单的控制方法,通过改变供电电源(电压)和提供给定子的频率来改变电机的扭矩和转速。这种方法相当简单,甚至用8/16位微处理器也能完成设计。不过,简便的设计也伴随着最大的缺陷——缺乏稳健可靠的控制。如果负载在高转速下保持恒定,这种控制方法倒是足够。但一旦负载发生变化,
[工业控制]
马达控制系统检查算法的量化问题分析
数字控制系统能给设计人员带来很多优势,比如它能执行高级运算并降低成本。因此,在执行数字马达控制系统时,数字处理器的选择就成为需要考虑的主要问题。   现实世界中的信号在时间上是连续的,而另一方面,信号数字化表示的精密有限,而且采样时间上不连续,因此导致了量化。明显的量化源包括ADC,具有截位、舍入、溢出误差特性的计算引擎以及脉宽调制(PWM)发生器。    使用更长字长的ADC可将ADC的量化误差最小化(嵌入式控制器中一般采用的是12位ADC)。另外设计者也需要注意采样多个电流时会产生的误差。如果使用一个ADC来连续采样两个电流,那么所产生的误差就能得到限制。    如果使用带双取样和保持电路的ADC,就可以
[工业控制]
马达控制应用32位AVR MCU系列【爱特梅尔】
爱特梅尔公司(Atmel® Corporation)宣布推出带有512KB嵌入式闪存的Atmel UC3C AT32UC3C0512C AVR® 微控制器。作为专注于汽车电子行业的微控制器供应商,爱特梅尔继续为市场带来新的符合汽车市场品质要求的微控制器(MCU)解决方案。新器件是专用于如HVAC、电动车窗,电动车门和电动座椅等马达控制应用的32位AVR MCU系列的首个成员,在片上集成有直接控制马达的PWM控制器和各种模拟功能,以及用于车内通信的汽车电子接口(CAN、LIN)。Atmel AVR UC3C系列还将提供适应高达125°C温度的真正5V器件。 Atmel UC3C汽车等级MCU具备能耐受最恶劣的
[单片机]
<font color='red'>马达控制</font>应用32位AVR MCU系列【爱特梅尔】
采用ARM Cortex-M0处理器内核 英飞凌XMC1302马达控制解决方案
XMC1300器件是基于XMC 1000系列微控制器的成员,采用ARM Cortex-M0处理器内核。 XMC1300系列解决了控制需要电机控制,数字电源转换的实时性问题。它还具有外设LED照明应用。 XMC1302主要特性 CPU子系统 CPU内核 高性能32位ARM Cortex-M0 CPU 大多数16位Thumb和32位Thumb2指令集的子集 单周期32位硬件乘法器 用于操作系统支持的系统计时器(SysTIck) 超低功耗 嵌套向量中断控制器(NVIC) 事件请求单元(ERU),用于处理外部和内部服务请求 MATH协处理器(MATH) 用于三角计算的CORDIC单元 除法单元 片上存储器 8kb片上ROM 16k
[单片机]
采用ARM Cortex-M0处理器内核 英飞凌XMC1302<font color='red'>马达控制</font>解决方案
大联大旗下友尚集团推出多个马达控制方案
大联大集团近日宣布,其旗下友尚集团推出多个马达控制方案,品牌囊括Fairchild、Magnachip、Samsung、ST、TI 以及TE 等众多国际一线品牌。 在现今的生活中,许多工具和几乎所有家用电器都有马达系统。马达用途众多,大至重型工业,小至小型玩具都有其踪迹。在不同的环境下会选择不同类型的马达,例如常见的家用电器,例如电风扇、电动玩具车、电动车、洗衣机、电动刮胡刀、吹风机等等。 为了便于工程师选择合适的方案,大联大旗下友尚集团汇集所代理的众多一线品牌,针对不同的应用领域提供不同的参考方案。具体方案包括Fairchild高效无刷直流电机控制设计方案、Magnachip 的Power Module 马达控制应用方案、
[嵌入式]
IGLOO的FPGA构成的马达控制方案
本文介绍了IGLOO系列主要特性和优势,IGLOO系列架构框图以及采用AGL125的马达控制子板主要特性,步进马达控制逻辑方框图,BLDC马达控制逻辑方框图以及马达控制子板电路图和材料清单。 Actel公司的IGLOO系列FPGA是采用Flash Freeze技术的低功耗闪存FPGA,它基于130nm闪存工艺,具有最低功耗,单片解决方案和小占位面积的封装,可重新编程以及丰富的其它特性,核电压1.2 V -1.5 V,支持低功耗和单电压系统工作,Flash Freeze模式的功耗为5uW,系统门从15K到100万,多达144kb的双端口SRAM和多达300个用户I/O,可满足消费品,工业,医疗,汽车电子,计算,通信和
[嵌入式]
IGLOO的FPGA构成的<font color='red'>马达控制</font>方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved