异步Boost升压电路的短路保护如何设计?

最新更新时间:2014-09-06来源: 互联网关键字:异步Boost  升压电路 手机看文章 扫描二维码
随时随地手机看文章

Boost电路应用于低电压升高电压的场合,目前DC-DC主流的Boost电路都是异步升压,同步Boost升压芯片较少。异步Boost芯片电路设计相对简单成本也较低廉,广泛应用于手持终端设备、玩具、LED照明、DVB等。在异步Boost芯片广泛应用的同时,有个令人担忧的隐患,输出端短路后可能造成设备损坏或引发事故。基于此,经常有工程师咨询异步Boost升压电路如何做短路保护设计?关于升压Boost短路保护问题,大家可以踊跃去论坛发帖,欢迎广大对此感兴趣的工程师参与交流讨论!

某品牌DVB应用BOOST升压芯片12V to 13V/18V,工作电流最大不超过500mA。用的芯片是AP2008,这是一款异步PWM控制升压芯片,开关频率1MHz,开关管限流值2A,开关管RDSON典型值200mΩ,基准电压0.6V,输入工作电压范围3V~25V,输出最高电压可达25V。你瞧,这问题就来了:短路后BOOST芯片会保护吗?而且一浪更比一浪强:短路会损坏电路板上其它任何元件吗?像这样的问题同样困扰到你了吗?别担心马上给你答复,上图:



原理图

图为简化的应用电路,为了分析方便,只讨论12v-18v的部分电路,典型的异步BOOST升压电路。

在回答问题之前,我们先得弄清楚输出端短路后会发生什么?假设1,12V供电电源是理想电源,二极管D1恒压降为1V,芯片内部NMOS导通压降为1V,L1为纯电感,短路时刻初始电流为IL0。


短路后电感电流的瞬态方程

其中vin=12V,L1=10μm,IL0为短路时刻前初始电流,短路后电感两端压降始终为Vin-1V。AP2008开关频率f=1MHZ,则开关周期T=1μS,一个开关周期时间,电感电流IL(1L)=1.1A+1L0,依次计算1L(2T)=2.2A+1L0,1L(3T)=3.3A+1L0,···,1L(10T)=11A+1L0短路后1T-10T这段时间,电感始终都在储能,电感电流快速线性上升,在10T后就能达到至少11A的电流。短短10μS电流上升到11A,很难想象电感、二极管、IC谁先悲剧吧?假设NMOS导通压降1V是方便列写电感电流的暂态方程,为了分析真是的短路过程,现在我们回到VDS=id*Rdson。集中精力来一起分析:短路后,FB检测到0V电压,IC会以最大导通占空比的方式试图达到18V。在电感电流上升到2A之前,IC内部NMOS最大导通压降VDS=2A*0.2Ω=0.4V较二极管D1的导通压降低,IC内部NMOS导通占空比90%,二极管导通占空比只有10%,因此IC承受的电流应力比二极管D1要大。经过约2T的时间电感电流上升到2A,电感饱和,芯片限流也开始起作用,转折点出现。众所周知电感随着电流的磁芯会饱和,此应用电路电感饱和和电流选型2A是非常合理的,约2T后电感电流上升到至少2.2A,电感磁芯趋于饱和,电感电流由线性转变为指数增加,急速上升的电感电流就像泄堤的水流,IC内部限流动作跟不上,泄堤的电感电流会贯穿NMOS,IC限流在延迟一段时间后才会检测到过流信号,从而关断NMOS,NMOS关断后电感电流完全流过二极管D1。这里有个前提和细节需要说明下:a.电感的线径满足2A规格,饱和后不会率先烧断铜丝。b.当电感电流达到2A以上时,VDS>0.4V,NMOS导通时二极管也会导通起到分流作用,IC限流检测虽然有延迟,但该延迟时间远小于T*10%,NMOS关断后不会有电流流过,而二极管是一直流过电感电流的。2T后电感电流急剧增加,二极管承受电流应力远大于IC,因此二极管会先损坏。二极管损坏烧断,电感产生反向感应电动势将IC高压击穿!

电路图

假设2,12V电源供电能力不强,实际的电源都会有最大带载能力和短路保护功能。当输出短路后,电感电流持续增加,当增加到过载电流后,电源会进入保护模式。过载或短路的电流依然较大,至于电感、二极管、IC会不会坏。取决于电感的线径、二极管耐电流冲击能力,如果二极管烧断和假设1的结论一样,如果是电感烧断,IC和二极管都不会坏。

分析了短路后发生的一系列连锁反应,可以看出异步升压电路在短路后是有风险的。那么我们该如何做保护设计呢?

下面我们先来看一个保护电路,大家可以看看该电路能否起到短路保护的作用?

上图的电路很明显是不能作为短路保护来应用的,这只是一个过流或限流保护电路。最终输出端电流被限定在设定值,而MOS管会承受几乎全部的压降,极大的功耗Imax*Vdd,易将MOS烧坏。

从这个例子可以看出,短路保护不能等同限流保护,所以我们必须重新思考。短路保护的基本要求:1.短路响应速度要快,及时保护器件不被烧毁。2.短路后的功耗要很低或完全关断输出。3.短路故障解除后要能恢复。基于这三个要求,设计出的短路保护电路才是实用的。按短路保护的方式可分为三大类:1.短路电流折回保护方式;2.打嗝保护(开关波重复开启);3.短路自锁关断输出。前两种方式的短路功耗较大,常用于要求短路解除后能自恢复的电路中,像BUCK芯片一般都有降频打嗝模式的短路保护,这类保护电路设计较复杂些,需要用运放、比较器或555定时器等。下面我们来看下第三种保护模式——短路自锁关断输出。

一种简单自锁短路保护电路

自动复位开关可以用单片机的I/O口控制或机械轻触开关控制,上电后先给自动复位开关置高电平,Q102导通,Q101导通,AP2008升压工作,输出电压建立18V,通过Z101、D101、R103维持Q102导通,此时把自动复位开关置低电平。这样一个自成反馈的升压电路可以稳定的运行,当短路发生后,输出电压为0V,Q102关断,Q101关断,输出电压为0,短路电流为0,形成自锁状态。当短路故障解除后,需要再次开启自动复位开关,等输出电压建立后再将自动复位开关关断。

总的来说,电路没有必要太花哨,保护电路都是用纯硬件实现的,在短路故障发生后,其中一个开关会被立即关断锁死;短路故障解除也很简单,输入端重新上电即可。

关键字:异步Boost  升压电路 编辑:探路者 引用地址:异步Boost升压电路的短路保护如何设计?

上一篇:安规当中你最容易遗忘的5大因素
下一篇:DIY达人送上自制充电器定时插座设计

推荐阅读最新更新时间:2023-10-12 22:44

一个简单的LED升压电路
  一个用于 LED 手电筒上的简单的升压电路。   接通 电源 后,VT1因R1接负极,而c1两端电压不能突变。VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L储存能量,L上的自感电动势为左正右负。经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib Ic /β(β为放大倍数)。随着电源对c1的充电,C1两端电压逐渐升高,即VTI(b)极电位逐渐上升,Ib1逐渐减小, 当Ib1 =Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。此时.
[电源管理]
一个简单的LED<font color='red'>升压电路</font>
热插拔控制器在直流升压电路中的设计应用
热插拔保护电路通常用于服务器、网络交换机、以及其他形式的通信基础设施等高可用性系统。这种系统通常需要在带电状态下替换发生故障的电路板或模块,而系统照样维持正常运转,这个过程称为热插拔(Hot Swapping)。本文将阐述热插拔控制器的另一种用法,利用热插拔保护电路具有的过流和短路保护功能,解决开关直流升压电路的输出端保护问题。 1 开关直流升压电路的基本原理 开关直流升压电路(The Boost Converter或者Step-up Converter),是一种开关直流升压电路。输出电压高于输入电压,输出电压极性不变,基本电路图如图1所示。     开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管
[电源管理]
热插拔控制器在直流<font color='red'>升压电路</font>中的设计应用
关于推挽升压电路准软开关的实验研究
在48V以下的中小功率逆变器上,前级结构,多数采用 推挽 方案,主要是它 电路 成熟,成本相对比较低,但推挽 升压 电路有一个顽症,就是推挽功率 MOS 管上的尖峰问题,强烈的尖峰不但造成大量的谐波干扰,还会威胁到MOS管的安全。而一旦出现尖峰,再加吸收回路一般效果不大,而只会大大降低电路的效率。 下图是我的2400W高频机,在接近满载时的前级D极波形,尖峰干扰多的很无奈。 在这种情况下,我一般不敢长时间让它工作,因为才80V耐压的管子,尖峰最高已经超过80了。 把前级整成准谐振式的实验,据说可以大大降低尖峰现象。我也曾专门去找来一篇浙江大学一位教授的论文,但一看这论文,光计算公式就有三四页,要把这一大堆的公式研究懂,以我的能
[电源管理]
关于推挽<font color='red'>升压电路</font>准软开关的实验研究
RH5RI升压电路
RH5RI升压电路 RH5RI/H的优点是能低电压工作,最高输出电压设定为7.5V,若输出电压超过7.5V,要外接稳压二极管VD1来实现,如图中所示。
[电源管理]
RH5RI<font color='red'>升压电路</font>
3.7v升压5v电路图
LY1058»300KHz开关型DC-DC升压转换器。»输入电压2.6-5.5V。»低保持电压:0.9V,启动电压1.2V。»固定输出电压:5V1500mA。»外置开关MOS管。»封装:SOT-23-5。 LY9899»300KHzPFM/PWM自动转换开关型DC-DC升压转换器。»低电压启动:0.8V启动,输入电压0.8-6.5V。»输出电压范围:1.5V~20V;可调输出。»输出电流:300mA~2000mA。»外置开关MOS管。»封装:SOT-23-5。以下是种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。 3.7v
[电源管理]
应用于太阳能电池供电的升压电路的讨论
便携式产品一般都采用电池供电,而因为成本和体积方面的考虑,在设计上有减少使用电池数量及体积的趋势,而电池数量如果减少了,就会导致电源电压比设备所需要的工作电压要低,这时就需要用到 DC/DC 升压电路 。另外,因为全球能源问题,各种各类的电池使用已备受关注了,其中包括 太阳能电池 。 一般单节太阳能电池最低电压在0.4-0.7V之间,在这样低的输入电压情况下,就会遇到以下三大问题: 1.开关器件的驱动问题 现在的DCDC升压电路一般有两种供电方式,一种是直接从输入供电,一种是从输出供电。 如果是从输入供电则正常情况下驱动NMOS的高电平最多等于输入电压,当输入电压很低时
[工业控制]
MAX660与S81350HG构成的升压电路
MAX660与S81350HG构成的升压电路 图中是MAX660与S81350HG构成的升压电路,它把3V输入电压变化为5V输出电压,此电路的输出电流可到40MA,此时MAX660的电压降最大值为0.4V,S81350HG的电压降最大值为0.2V,输入电压为2.9V时也能工作。
[电源管理]
MAX660与S81350HG构成的<font color='red'>升压电路</font>
基于LT3782的大电流升压电路设计
引 言 由于移动通信等技术的迅猛发展,对车载设备电源提出了更高的要求。急需一种将汽车电瓶的12 V电压转换为16 V,18.5 V,24 V等多路输出的电源,要求每路输出的电流可以达到7 A。由于市面上的升压DC/DC达不到电流需求,目前常采用将12 V电瓶电压逆变到交流220 V,再由交流220 V产生直流18.5 V等多路输出的方法,虽然其可以达到电流需求,但电源经过两次转换后,电源效率将大幅度降低,大约只有60%左右,这样的转换效率对汽车电瓶供电是很难接受的。针对这一问题,该文提出基于两相步进升压型DC/DC控制器LT3782设计大电流输出的升压型DC/DC模块的方法。 1 LT3782简介 LT3782是美国凌
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved