基于CPLD的数字式大功率激光驱动电源设计

最新更新时间:2014-09-24来源: 互联网关键字:驱动电源  CPLD 手机看文章 扫描二维码
随时随地手机看文章

  激光加工主要是利用CO:激光束聚焦在材料表 面使材料熔化,同时用与激光束同轴的压缩气体吹 走被熔化的材料,来完成所需轨迹图形的切割或者相应工艺品表面的雕刻。激光加工属于非接触加工, 具有加工方法多、适应性强、加工精度高、质量好和加工效率高等优点。激光驱动电源作为激光器的 直接控制单元,其光开关响应的最高频率和出光功率稳定和可靠性会直接影响最终的加工效果。基于快速响应和出光稳定的需求,乐创自动化技术有限公司研发了一种基于CPLD的数字式大功率激光驱动电源。

  2 、系统组成及其工作原理

  2.1 系统组成

  基于 CPLD的数字式大功率CO:激光驱动电源 的系统结构如图1所示。该系统主要由主电源、稳压电源、辅助电源、驱动桥路、逆变升压、反馈电路和数字控制电路等部 分组成。其中主电源和稳压电源主要完成AC20V 的输人到310V直流电压的稳定输出,保证逆变升 压部分在一个合理的参数下稳定可靠工作。辅助电源主要是将310V直流电压转换成SV和12V直流电 压供数字控制部分和反馈比较器部分使用。驱动桥路和逆变升压主要是完成负载需要的约200(刃V高压的输出。反馈电路主要起到保护作用,控制输出 电流的范围。

  

  基于CPLD的数字式大功率激光驱动电源设计结构框图

  2.2 工作原理

  在激光驱动电源的原理框图中,AC202V经过 整流滤波后产生310V的直流电压,310V直流电压经过稳压电源输出稳定的310V直流电压供逆变 升压部分和辅助电源工作,辅助电源把3lOV直流电压变成12V和SV直流电压给数字控制部分和反 馈部分提供基准电压。数字控制部分通过控制驱动桥路的导通时间来完成功率的控制。反馈电路通 过采样输出源端的电流大小来保护输出电流不超过 30MA。

  3 、功能的实现方法

  3.1主电路及稳压电路部分

  AC220V 经过整流滤波后得到301V左右的直流电压,再经过开关型稳压电源得到稳定的3lOV直流电压。

  3.2 驱动桥路及逆变升压部分

  310V 直流电压经过半桥逆变得到高频方波电 压,为了保证低电流激光器的器辉,在逆变回路中采用了串联谐振和并联谐振技术。高频升压变压器 和高压整流电路构成的升压部分被封装成独立的元件高压包。设计中采用2个高压包串联输出给激光 器供电。

  3.3数字控制部分及反馈部分

  数字部分采用CPLD控制,一方面CPLD完成 开关光、水保护、过流过压反馈等信号的逻辑控制, 另一方面主要是完成PWM波的输出。

  3.4 辅助电源部分

  基于VIPer22 A变换器和高频电源变压器的辅 助电源,输出电压波形稳定无较大尖峰。

  4 、功能特点

  4.1稳定性好,抗外电压波动性强,调节范围大

  由在逆变升压电路之前设计了一级开关型稳 压电源,该稳压电源能够保证外网电压在一15% (187V)一+10%(242V)之间变化时,逆变升压部 分的基准电压稳定在30v,这样就保证了逆变升压部分能工作在一个稳定的参数下,同时也就提高了其工作的稳定性。

  4.2 频率响应高

  由于控制部分采用了基于CPLD的数字控制方 式,在激光雕刻加工中可以胜任lokb/s的控制脉 冲,能够很好地完成坡度雕刻和小字的雕刻。

  在激光切割加工中,由于数字控制模块输出的 驱动脉冲的占空比不受外部非控制信号的影响,能 够保证在长时间工作下稳定的功率输出。在激光雕刻中,能够实时响应控制系统的功率数据,同时由 于激光器的出光功率与工作电流之间并不是线性关系,在坡度雕刻时,可以通过数字控制部分修正光 功率,使其以线性变化来保证在雕刻坡度中对坡度 的要求。

  4.3 可以定制的控制方式

  在激光加工应用中,有时会有很多特殊的加工 要求,如切割起始阶段要求出光功率大一些。数字 控制方式能够方便地修改程序来满足相应的新要求。

  5 、结论

  通过在成都微巨科技有限公司生产的1.6M的 激光器上长时间测试,该激光驱动电源频率响应高、控制精确、且输出电流纹波小,能够保证激光器长 期稳定的工作。

关键字:驱动电源  CPLD 编辑:探路者 引用地址:基于CPLD的数字式大功率激光驱动电源设计

上一篇:隔离型全桥DC-DC电源的设计方案
下一篇:高速ADC电源设计方案详细解析

推荐阅读最新更新时间:2023-10-12 22:46

LED驱动电源方案大全
    一、什么是LED ?     LED(Light Emitting Diode),又称发光二极管,它们利用固体半导体芯片作为发光材料,当两端加上正向电压,半导体中的载流子发生复合,放出过剩的能量而引起光子发射产生可见光。     二、LED有哪些优点?     ★ 高效节能 一千小时仅耗几度电(普通60W白炽灯十七小时耗1度电,普通10W节能灯一百小时耗1度电)     ★ 超长寿命 半导体芯片发光,无灯丝,无玻璃泡,不怕震动,不易破碎,使用寿命可达五万小时(普通白炽灯使用寿命仅有一千小时,普通节能灯使用寿命也只有八千小时)     ★ 光线健康 光线中不含紫外线和红外线,不产生辐射(普通灯光线中含有紫外线和红外线)
[电源管理]
CPLD在信号滤波和抗干扰中的应用
摘要: 滤波和抗干扰是任何智能仪器系统都必须考虑的问题。在传统的应用系统中,滤波部分往往要占用较多的软件资源和硬件资源。复杂可编程逻辑器件(CPLD)的出现,为解决这一问题开辟了新的途径,条用CPLD实现滤是一种高效可靠的方法。介绍了利用MAX+PLUS Ⅱ对CPLD编程来实现对传感器和按键信号滤波和抗干扰。该方法已在产品开发中获得了成功应用。 1 滤波和抗干扰概述 单片机应用系统的输入信号常含有种种噪声和干扰,它们来自被测信号源、传感器、外界干扰源等。为了提高测量和控制精度,必须消除信号中的噪声和干扰。噪声有两大类:一类为周期性的;另一类为不规则的。前者的典型代表为50Hz的工频干扰,一般采用硬件滤波,使
[模拟电子]
关于单片机脉冲信号源的CPLD实现方法
  单片机产生的脉冲信号源由于是靠软件实现的,所以输出频率及步进受单片机时钟频率、指令数和指令执行周期的限制。文中介绍了一种以CPLD为核心的脉冲信号源,脉冲信号源的参数(频率、占空比)由工控机通过I/O板卡设置,设定的参数由数码管显示,这种脉冲信号源与其它脉冲信号发生电路相比具有输出频率高、步进小(通过选用高速CPLD可提高频率及缩小步进)、精度高、参数调节方便、易于修改等优点。    1 系统组成及工作原理   脉冲信号源电路核心采用一片可编程逻辑器件EPM7128SLC84—10,它属于Ahera公司MAX7000系列产品,MAX7000系列产品是高密度、高性能的CMOS EPLD,是工业界速度最快的可编程逻辑器件系列,
[单片机]
关于单片机脉冲信号源的<font color='red'>CPLD</font>实现方法
可编程逻辑器件与单片机构成的双控制器
在传统的控制系统中,人们常常采用单片机作为控制核心。但这种方法硬件连线复杂,可靠性差,且单片机的端口数目、内部定时器和中断源的个数都有限,在实际应用中往往需要外加扩展芯片。这无疑对系统的设计带来诸多不便。 现在有很多系统采用可编程逻辑器件CPLD作为控制核心。它与传统设计相比较,不仅简化了接口和控制,提高了系统的整体性能及工作可靠性,也为系统集成创造了条件。但可编程逻辑器件的D触发器资源非常有限,而且可编程逻辑器件在控制时序方面不如单片机那样方便,很多不熟悉的应用者往往感到应用起来非常的困难。利用可编程逻辑器件和单片机构成的双向通信控制器克服了两者的缺点,且把二者的长处最大限度地发挥出来。 1 CPLD与单片机AT89C
[单片机]
由<font color='red'>可编程逻辑器件</font>与单片机构成的双控制器
循环冗余校验码的单片机及CPLD实现
    摘要: 循环冗余码校验(CRC)是一种可靠性很高的串行数据校验方法。介质循环冗余码校验的基本原理,并分别用单片机和CPLD作了循环冗余码验的软件实现和硬件实现。包括汇编语言和VHDL语言源程序。     关键词: 差错校验 查表法 CPLD 1 基本原理 串行数据的差错检验是保证数据正确的必要手段,通常采用奇遇校验法和循环冗余校验法。这两种方法都是通过冗余数据来提供必要信息。奇偶校验法适用于以字节为单位数据传输。例如用偶校验传送1个ASCII字符时,要附加1个校验位,从而使全部9位中“1”的个数为偶数。奇偶校验简单易行,但当数据崩溃或出现多位错误时,往往不能检验出来,因而可靠性不高。 循环冗
[工业控制]
高速压电陶瓷驱动电源
   0 引 言   压电陶瓷具有体积小,分辨率高,响应快,推力大等一系列特点。用它制成的压电陶瓷驱动器广泛应用于微位移输出装置、力发生装置、机器人、冲击电机、光学扫描等领域。因此压电陶瓷的驱动电源技术已成为非常重要的研究热点。   目前,国内常见的压电陶瓷器件主要基于静态特性,因此该类压电陶瓷驱动电源动态特性不理想,交流负载能力差,不适合应用于动态领域。例如,压电陶瓷管冲击马达,是基于冲击原理,利用锯齿波驱动压电陶瓷管,使得压电马达产生正反的旋转,频响范围宽及具有很高上升和下降速率是该类压电陶瓷驱动电源必须满足的重要动态特性。但现在国内对此种驱动电源的研究不多,且价格昂贵,因此有必要设计一种满足上述要求且价格低廉的压
[电源管理]
基于CPLD的数字电路设计
    0 引 言 可编程逻辑器件PLD(Programmable Logic De-vice)是一种数字电路,它可以由用户来进行编程和进行配置,利用它可以解决不同的逻辑设计问题。PLD由基本逻辑门电路、触发器以及内部连接电路构成,利用软件和硬件(编程器)可以对其进行编程,从而实现特定的逻辑功能。可编程逻辑器件自20世纪70年代初期以来经历了从PROM,PLA,PAL,GAL到CPLD和FPGA的发展过程,在结构、工艺、集成度、功能、速度和灵活性方面都有很大的改进和提高。 随着数字集成电路的不断更新和换代,特别是可编程逻辑器件的出现,使得传统的数字系统设计方法发生了根本的改变。可编程逻辑器件的灵活性使得硬件系统设计师在实
[嵌入式]
MCS-51单片机与CPLD/FPGA接口逻辑设计
在功能上,单片机与大规模CPLD有很强的互补性。单片机具有性能价格比高、功能灵活、易于人机对话、良好的数据处理能力潍点;CPLD/FPGA则具有高速、高可靠以及开发便捷、规范等优点。以此两类器件相结合的电路结构在许多高性能仪器仪表和电子产品中仍将被广泛应用。本文就单片机与CPLD/FPGA的接口方式作一简单介绍,希望对从事单片机和CPLD/FPGA研发的朋友能有所启发。 单片机与CPLD/FPGA的接口方式一般有两种,即总线方式与独立方式,分别说明如下: 一、总线方式 单片机以总线方式与CPLD/FPGA进行数据与控制信息通信有许多优点。 (1)速度快。如图一所示,其通信工作时序是纯硬件行为,对于MCS-51单片机,只需一条单字节
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved