USB充电解决方案:高效 AC 适配器

最新更新时间:2014-10-13来源: 互联网关键字:USB充电  AC  适配器 手机看文章 扫描二维码
随时随地手机看文章
 通用串行总线()充电已经成为小型电子产品的一种常见供电方法。许多新型消费类电子设备(例如:智能手机、平板电脑、电子阅读器等)的AC电源/电池充电器的功率范围均为5到25W,并且都有一个标准A接口。5V输出电压已经成为兼容PC/桌面端口充电和通信的首选。目前主流的连接方法是使用一条标准(mini或者Micro-B)线,而大多数情况下使用的却是非标准型连接器。随着人们对电池充电问题关注度的提高,老式的“块儿砖式”正变身为一种外形“酷”、重量轻、设计时尚并且安全绿色的充电器。除满足标准调节要求外,原始设备制造商还在不断打破适配器效率和空载功耗(待机功耗)方面的性能局限性。例如,各大主要移动电话充电器制造商已经一致推行五星(空载功耗小于30 mW)充电器功耗评级制度。这让广大消费者可以更加容易地比较和选择那些能效高的充电器。

  最近,人们在激烈讨论如何标准化移动电话输入,以及如何生产出一种能为所有手机充电的通用充电器。2006年,中国发布了一项新规定,旨在标准化墙上充电器及其连接线。无独有偶,现在GSM协会(GSMA)也正领导制定“通用充电解决方案”适配器计划,其目标是用micro USB接口移动电话供电。普通充电器要求提供5V±5%的电压,最小电流为850 mA,空载功耗小于150 mW。另外,它还必须符合USB设计论坛(USB-IF)电池充电规范1.1(BC1.1)。*除便于消费者使用以外,标准化充电器还可减少大量的多余充电器。另外,带有多个USB插孔的AC适配器,让消费者可以在无需使用众多专用充电器的情况下方便地为多种电子设备充电。一些高输出电流充电器还允许进行快速电池充电。相比限制电流500mA的标准USB 2.0端口,这是一个重要优势。人们对于这些改进性能的需求日益增加,同时适配器设计也越来越小型化,这些都让这种“黑匣子”中的热管理成为摆在广大电源设计者面前的一道巨大难题。

  电源架构

  考虑到功耗大小问题,图1所示反向拓扑结构因其简单性和低成本成为我们的首选。二次侧肖特基二极管整流器(图1a)的传导损耗,成为实现高效率、紧凑型适配设计的一个限制因素。例如,在一个典型5-V/3-A适配器中,满负载条件下二极管整流器本身的功率损耗便可达到总系统损耗的30%到40%(忽略二次损耗对高一次侧损耗的综合影响)。为输出(图1b)安装一个同步整流器(SR),可以提高转换器的总效率,并且由于产生的热量更少(适配器设计中至关重要),因此系统热管理更加容易。

  图 1 简化反向拓扑

  

 

  *USB-IF BC1.2将充电电流范围从1.5A扩展至5A。

  给经典反向拓扑增加一个SR并不复杂,但却可以大大降低总系统功耗。这种方法可有效改变功耗电平,功耗随着MOSFET技术的快速发展而不断降低。因此,同步整流现在适用于种类繁多的各种产品。SR的低功耗特性让设计人员可以使用一些体积更小的组件。这些组件拥有更少的散热组件,从而实现降低组装成本、产品尺寸和包装重量的同时提高功率密度。

  请注意,如果允许SR MOSFET在空载/待机状态下开关,系统功耗性能可能会降低。除SR控制器IC所要求的静态功耗以外,SR-MOSFET开关功耗会成为实现最佳可行系统空载性能的限制因素。

  绿色输出整流:满负载到空载

  本文现在将为您介绍如 TI UCC24610绿色整流器控制器等IC如何简化USB充电器设计,以及如何实现满负载范围的高系统效率。图2显示了有和没有同步整流的一个反向转换器的简化系统波形。这些波形是某个控制方案所产生的结果,其直接检测MOSFET漏极到源极电压(VDS)。相比其他实现方法,例如:一次侧同步或者使用二次侧电流变压器实现的同步控制,这种控制方法在今天获得了广泛的使用。这种控制方案中,需让SR控制器的关闭阈值尽可能地接近零,从而实现MOSFET通道的最大传导时间。

  图 2 使用肖特基二极管和SR-MOSFET输出整流的简化反向波形

  

 

  我们可以对反向转换器进行设计,让它可以根据终端应用要求工作在不同模式下。对于工作在连续导电模式(CCM)下的设计来说,变压器二次绕组的电流在一次侧MOSFET开启以前不会降至零,从而导致一定时间的交叉导电。在这类转换器中实现同步整流后,一旦一次侧开关开启SR MOSFET马上就要关闭,这点极为重要。这样可以防止出现反向导电,并控制额外功耗和器件应力。“绿色整流器”的同步功能检测到一次侧导通跃迁后,关闭SR MOSFET。图3描述了SR门关断跃迁现在如何受到一次侧同步信号的控制,而不受VDS检测的控制。

  如前所述,实现同步整流可能会降低轻载效率和空载功耗。轻载或者空载功耗的主要原因是SR-MOSFET开关和SR控制器IC偏置。“绿色整流器”成功地解决了这些问题,方法是:(1)使用一个自动轻载检测电路,在其导电时间降至某个阈值以下时关闭SR MOSFET的门开关;(2)使用EN功能,让IC进入睡眠模式,消除静态功耗。轻载检测电路对每个开关周期的SR导电时间和设定最小“导通”时间(MOT)进行比较。当负载降低时,二次导电时间短于MOT,且下一个SR门脉冲失效。利用控制器IC的EN功能,可实现进一步降低空载功耗。我们可以使用一种MOSFET漏极电压的简易均衡电路,空载状态下让IC进入睡眠模式,从而将IC的偏置电流消耗限制在100 µA。利用这种方法,可以再降低10mW的空载功耗。提高空载性能的最后一步是添加一个低电流肖特基二极管,并与SR MOSFET并联在一起。

  图 3 一次侧同步的典型 CCM 反向波形

  

 

  例如,我们使用两个控制器芯片组(TI UCC28610和UCC24610),为平板电脑终端应用设计一种3A额定电流的USB充电器。访问本文末尾的网站地址,可以查看到这种充电器的参考设计(PMP4305)。UCC24610非常适合于那些使用5-V反向开关模式电源的应用,并且可以工作在4.75到5.25 V规定USB电压范围内。因此,这种SR控制器直接偏置于转换器输出,无需在主电源变压器上安装辅助绕组。这种控制器还允许使用两个消隐计时器的外部编程,防止导通和关断过渡期间检测到的VDS振铃引起SR伪触发。图4显示了满负载状态下PMP4305的典型功率级波形。IC控制方案不受导通时VDS信号的严重振铃所影响,因为可编程MOT计时器在此期间禁用了VTHOFF比较器。

  图 4 PMP4305 满负载波形

  

 

  图5显示了115V和230V AC线压状态下SR-MOSFET和肖特基二极管输出整流效率之间的对比情况。实现同步整流,可在满负载到约25%满负载范围内实现80%以上的效率。另外,在这一负载范围内,通过肖特基二极管整流可实现3到5个百分点的效率提高。

  图 5 肖特基二极管与同步整流(SR)系统效率对比图

  

 

  结论

  消费类设备USB充电解决方案正受到越来越多人的关注。拥有多个USB接口的10W到25W充电器通用标准,可为多种设备供电,无需为每一种新的电子设备都配备一个新的墙上充电器。我们需要使用一些高效率的转换器,才能满足高密度小型适配不断发展的需求。如UCC24610“绿色整流器”等器件,可以帮助提高转换器效率,并实现高密度USB充电器设计。

关键字:USB充电  AC  适配器 编辑:探路者 引用地址:USB充电解决方案:高效 AC 适配器

上一篇:USB充电器制作步骤
下一篇:如何针对压降补偿扩展电源

推荐阅读最新更新时间:2023-10-12 22:46

如何应对手机充电系统面临的挑战
引言 目前市场上有多种类型的适配器可为锂离子电池充电并为手机系统提供电源,同时由于中国实施了统一的手机充电接口,只要相容的USB接口的连接线都可以为手机充电,这样设计人员将无从得知消费者究竟使用何种适配器为手机充电,而这些适配器的电气规格会因为制造商的不同而各异,同时由于半导体工艺的不断进步,手机平台的主频和集成度越来越高,芯片面积越来越小,但平台芯片的耐压也随之降低,这些都为设计人员提出了严峻的挑战,要求设计人员必须设计出一个针对不同手机平台在使用不同适配器的情况下均能满足安全性和可靠性要求的手机充电系统。本文首先讨论手机充电系统面临的一些主要问题,然后针对这些问题提出了对应的措施,以帮助设计人员应对这些挑战。
[手机便携]
如何应对手机充电系统面临的挑战
安森美半导体亮点应用电力电子会议(APEC)
应用电力电子会议(APEC) 2017 – 展台1001 -美国佛罗里达州坦帕市–2017年3月24日 —推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON),宣布参与APEC 2017,这是全球电力电子行业的一个旗舰活动。会议期间,安森美半导体资深技术团队将在一系列专业的教育和行业会议上分享重要知识。会议将涵盖与当今设计工程界相关的主题,包括(下列日期及时间为美国时间): EMI滤波器与开关转换器的相互作用– 星期一, 3月27日, 上午8:30至12:00, 会议室13/14 高能效和高功率密度适配器的导带控制– 星期二, 3月28日, 上午8:30至12:00, 会议室18/19
[电源管理]
现场总线适配器的软硬件设计和现场应用
    一、概述     随着计算机在工业控制的广泛应用,控制局域网络也深入应用到各行各业之中。现行的诸多控制系统,若采用单机控制方式已越来越难以满足设备控制的要求,因为往往我们所控制的设备只是整个系统的一个基本单元,它既需要外部输入一些必要的信息,同时也需要向外部输出自身的运行参数和状态。所有这些,都要求我们采用控制网络技术,将众多设备有机的连成一体,以保证整个系统安全可靠地运行。     实际生产的巨大需求促进了局部总线的发展,同时也带来了“百花齐放,百家争鸣”的盛况。从国外到国内的现场通讯网络较为流行的有:RS-232;RS-422/485;HART;ProfieldBus;Dupline;CAN;Lonworks;FF
[嵌入式]
DIY简易USB充电
SB充电器套件,又名MP3MP4充电器,输入AC160-240V,50/60Hz,额定输出:DC 5V 250mA(标签贴纸为500mA,如果要长期输出更大电流,请更换Q1为13003)。MP3和MP4在全国范围大量流行,不过作为日常用品的充电器由于直接和220V高压相连,具有故障率较高,容易损坏的特点,特别是买到那些不成熟的产品后,真是苦不看言。最后,受学校老师委托,我们联系到了一款成熟量产的充电器套件,现在一同给广大电子爱好者分享。 下面是对着实物绘制的电路原理图:(电路板上有多种元件安装方法,安装请与原理图、实物图为准,PCB板上有些元件孔是不要安装的,有些元件要装在别的元件孔上,这点请注意!) 电路图如下
[嵌入式]
USB充电和用充电器充电有什么不同?
随着科技的发展,数码产品在我们的生活中已经变得非常的普遍,数码产品作为我们生活中常用的电子产品,需要经常的进行充电,在充电的过程中我们有时候会采用充电器直接充电,有时候又会采用USB接口来充电,那么到底用USB充电和用充电器充电有什么不同呢?下面就由充电器厂家永乐通的技术人员为您讲解: 一、电压稳定性不同 电脑USB电压相对于充电器来讲,误差很小,同时也很稳定,从这方面讲,电压误差和稳定性比充电器好得多。 二、电流不同 电脑所有的USB电压都是直流5V,只是电脑前面使用小的导线供电,如果是使用劣质导线,有时怕电流不够,不是电压不够,从而引起发热。电脑后面是从主板引出,铜皮会粗一些,没有发热顾虑。对于充电来说,电压
[嵌入式]
日本电产与日本电产三协共同研发出搭载有位置检测技术“Zignear®”的AC伺服电机 可支持 17bit分辨率、向工业
日本电产与日本电产三协共同研发出了一款搭载有“Zignear®”的AC伺服(分辨率:17bit) ,“Zignear®”是一种也可适用于工业机器人的、可替代的位置检测技术。 搭载有Zignear® 的AC伺服电机 【本产品的特征】 实现了与磁性编码器相同的部件个数、与编码器相同的位置检测精度及随动性。 位置检测误差的最高精度机械角小于±0.02°*。 可实现与传统17bit‐AC伺服电机相同的动作(通过搭载用于驱动无人搬运车(AGV) 的系统来证明) 。 形状与传统的磁性编码器相同,方便置换。 通过利用通用微型,可支持光学编码器输出的ABZ相输出、磁性编码器中一般的串行通信、电压输出、PW
[机器人]
Fluke Networks推出福禄克全球首款经过认证的CAT 8现场测试仪
中国北京,2017年2月14日—— Fluke Networks日前推出DSX-8000 线缆测试仪,这是福禄克全球首款经过独立机构认证和认可、满足CAT 8(8类线缆)现场测试标准所有要求的现场测试仪。DSX-8000是Versiv™电缆认证系列产品的最新成员,继承了Fluke Networks产品的一贯品质,帮助数据通信安装方更加快速、准确、有效地实现铜缆和光纤项目的系统验收。 “Fluke Networks DSX-8000线缆测试仪经过Intertek的认证,测量精度满足ANSI/TIA-1152-A Level 2G要求。”Intertek负责ICT布线产品测试的项目工程师Antoine Pelletier介绍说:“
[测试测量]
Fluke Networks推出福禄克全球首款经过认证的CAT 8现场测试仪
蓄电池充放电装置中双向AC/DC变流器的研究
0 引言   随着电力电子技术的发展,蓄电池在工业领域得到了广泛的应用,如邮电、通讯、电力系统、UPS系统、逆变及特种电源系统等,因此,蓄电池的维护显得越来越重要。对蓄电池运行状态进行监控并定期进行均衡充放电维护是延长蓄电池使用寿命,保证蓄电池正常工作的必不可少的手段之一。   目前,常规的蓄电池维护大都采用充电器和放电器,充电器一般采用晶闸管控制。因而具有谐波严重、功率因数低等缺点。而蓄电池放电时主要利用电阻放电,消耗了大量的电能。虽然也有少数采用晶闸管有源逆变向电网馈能,但仍不可避免地因为谐波和低功率因数而污染电网。随着电力电子技术和计算机技术的发展,采用SPWM双向整流逆变技术可以实现蓄电池的充放电控制。它实现了网侧电流正弦
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved