DC-DC电源系统的优化设计

最新更新时间:2015-01-17来源: 互联网关键字:电源系统 手机看文章 扫描二维码
随时随地手机看文章
  随着电子设备的微型化,紧凑型电子设备的供电是一个非常重要的问题。目前普遍地应用于电池供电的设备和要求省电的紧凑型电子设备中。应用的目的一方面是要进行电压转换,给一些器件提供合适的工作电压,但更重要的是在电压转换的同时保证有较高的系统效率和较小的体积。在正常情况下优秀的有高达95%以上的转换效率。较高的系统效率不仅可以延长电池使用周期,也可以进一步减小设备体积。

  经分析不难发现,DC-DC电源的系统效率一方面受限于电源系统本身的耗能元件,如电源内阻、滤波器阻抗、连接导线及接触电阻等;另一方面与DC-DC转换器的工作状态和电源参数也有很大关系,合理地配置这些设计参数可以改善系统效率。电源内阻的耗能会使电源本身的效率降低,同时也影响到DC-DC转换器的输入电压,因而也影响DC-DC转换器的转换效率。在极端情况下,DC-DC转换器会进入非正常状态,严重时系统将完全停止工作,即使能正常工作也会严重损失系统效率。所以在设计中合理选择电源电压、减小电源内阻、正确选择DC-DC转换器的工作点可以有效地改善DC-DC电源的系统效率。DC-DC电源系统的优化设计关键在于正确分析电子设备各部分之间(尤其是电源和DC-DC转换器之间)的相互作用,找出影响电源系统效率的主要因素。

  1 一般电子设备中的功率分配

  一般含有DC-DC电源的电子系统可以划分成三部分:电源、电压调节器(DC-DC转换器)和负载,如图1所示。实际的电源部分可以是电池组或一个稳压或未稳压的直流电源,分析时可等效为理想的电压源Vs和电源内阻Rs两部分。其中Rs包括电源输出阻抗、串联滤波器电阻、导线电阻及接触电阻等,这些电阻是耗能元件,会严重影响电源效率。电源效率(Es)定义为电压调节器吸取的功率与电源提供的总功率之比:

  

 

  

 

  电压调节器由控制IC和相关的外围元件组成,控制IC的部分特性参数在制造商提供的数据手册中可以查到。电压调节器的转换效率(Ed)定义为DC-DC转换器向负载部分提供的功率与其输入功率之比:

  

 

  根据制造商的描述,DC-DC的转换效率Ed是输入电压Vi、输出电压Vo和负载电流Io的函数。但在正常情况下,转换效率Ed对负载电流Io的变化不敏感,当负载电流Io的变化量超出两个数量级时,效率的变化不会超出几个百分点,因此在非极端情况下DC-DC转换器的转换效率通常可以近似为常数。但是在极端情况下转换效率将会严重损失,这一点可以从DC-DC转换器的输入特性(如图2中的①所示)看出。在这里暂且把DC-DC转换器看成一个二端口的黑匣子。

  负载部分和电源部分类似,也可等效为有效负载Rl和与其连接的耗能元件Rp。负载部分的效率(Ei)定义为有效负载实际吸取功率与转换器提供的输出功率之比:

  

 

  整个系统的效率应为Es、Ed、El三部分效率的乘积。由于这三部分是相互影响的,所以系统优化设计的关键就在于正确分析三者之间的相互作用,合理配置它们之间的相关参数以使整个系统的效率最高。

  2 影响系统效率的关键因素

  设系统效率为Ea,那么Ea=EsEdEl

  由式[1]、[2]、[3]可得:

  

 

  在实际系统中Vo和Vl由负载电路要求确定,电源部分应提供合适的稳定的电压给负载。由于DC-DC转换器内部的特殊设计,Ed在正常状态下仅在很小范围内变化,只要工作点选择合适,Ed近似为一个常数。只有Vi、Vs是可选的,所以保证有较高的系统效率的关键在于Vi、Vs的取值。而Vi、Vs又取决于电源与电压调节器之间的相互作用。根据电路原理,它们之间有这样的关系:

  Vs=IiRs+Vi (5)

  显然,为了减小电源内阻的损耗,当Vs选定后应使Ii尽可能小一些,而Vi则尽可能大,这一点也正好与DC-DC转换器的输入特性(如图1中的①所示)相吻合。由DC-DC转换器的输入特性可知,在有效工作范围内Vi大一些意味着调节器将吸取较小的电流,这样电源内阻上的损耗将减小,而输出几乎不变。这样就提高了电源部分的效率。那么怎样使调节器从电源吸取较小的电流而输出几乎不变呢?这就要合理地选取DC-DC转换器的工作点。

  3 DC-DC转换器工作点的选取

  图2中①是一般DC-DC转换器的输入特性曲线,可见它的输入有一定的动态范围,其输入特性曲线可明显地分成三个区间。当Vig≤Vi≤Vmin时,DC-DC转换器处于启动工作的过渡状态,此间DC-DC转换器从电源吸取的电流随Vi快速上升,直到输出达到设定值时输入电流达到最大值Iimax;在此段内DC-DC转换器或许能工作,但是系统效率将很低,包括电源效率和DC-DC转换器的转换效率都比较低。Vminis区间是DC-DC转换器的有效工作区,在此区间内DC-DC转换器有较高的而且比较稳定的转换效率,所以综合来看调节器的工作点应选择在此段内的高端。

  图2中②是电源的阻性负载特性,由(5)式决定,①和②的交点即为DC-DC转换器的工作点Q。为了使①和②有交点且落在DC-DC转换器的有效工作区内,必须合理地选取Vs和Rs。其中Rs决定特性方程的斜率,Vs决定特性方程与横轴的交点,所以改变Vs、Rs即可移动工作点Q。结合上述分析应尽可能使工作点有较高的Vi。

  另外由图可知当Vs选定后,工作点就决定于电源内阻Rs。要使工作点永远不会进入非有效工作区,负载线斜率(-1/Rsmax)应有一个极限,即电源内电阻Rs应有一个上限Rsmax。由图可知:

  

 

  也就是说电源部分与DC-DC转换器之间的总电阻Rs应保证始终小于Rsmax。否则DC-DC转换器的工作点就会进入非正常工作区而严重损失系统效率,甚至使DC-DC转换器完全停止工作,这一点在实际设计中尤为重要。DC-DC电源对电源部分与DC-DC转换器之间的电阻Rs要求是非常高的。例如将5V电源转换成3.3V输出,并提供2A的负载电流,如果选用DC-DC转换器MAX797芯片(Vmin=4.5V),并保证有90%的转换效率,则Rs应不大于0.307Ω;若要求有95%的转换效率,则Rs应不大于0.162Ω。可见DC-DC电源对电源部分与DC-DC转换器之间的电阻Rs要求是非常高的。Rs也是影响系统效率的关键因素。

  综合上述分析,紧凑型电子设备中DC-DC电源系统效率是一个非常重要的问题。DC-DC电源系统优化设计的关键在于正确分析电源和电压调节器之间的相互作用,合理地配置电源的参数和调节器的工作点,可以有效地改善整个系统的效率。

关键字:电源系统 编辑:探路者 引用地址:DC-DC电源系统的优化设计

上一篇:DC-DC升压型开关电源的低压启动方案
下一篇:DC-DC电源模块的设计及优化方案汇总,提供完整软硬件设计指

推荐阅读最新更新时间:2023-10-12 22:51

Intersil多相55V同步升压控制器简化汽车电源系统设计
美国加州、MILPITAS -- 2016年3月2日 创新电源管理与精密模拟解决方案领先供应商Intersil公司(纳斯达克交易代码:ISIL)今天宣布,推出两款集成了高边和低边MOSFET驱动器的新型55V双相同步升压控制器--ISL78227和ISL78229。作为业内最可靠和高度集成的升压控制器,这两款产品可以帮助简化大功率汽车应用的设计。在12V电池供电下,这两款器件可以将输出电压升至24V、36V或48V,为优质200W - 800W中继线(trunk)音频放大器、起-停系统和前大灯LED灯串。这两款控制器还可以满足工业和电信应用的苛刻要求,在这些应用中,步升DC/DC转换器必须以小尺寸提供大功率。
[电源管理]
Intersil多相55V同步升压控制器简化汽车<font color='red'>电源系统</font>设计
TDK车载用电源系统薄膜电感器的开发与量产
TDK株式会社(社长:上釜 健宏)开发出了实现行业最高水平*额定电流的车载用电源系统薄膜电感器TFM201610ALMA系列。 近年来,汽车以各种控制功能的电装化为首,搭载通信、信息、自动行驶等ECU的趋势日益增加。同时,在多功能的背景下,如何节省空间也成为了一大课题,市场对于小型、高性能且高信赖性的电子元件的需求也不断提高。 此次,全新加入产品阵容的薄膜电感器TFM201610ALMA系列不仅尺寸小(L:2.0 W:1.6 T:1.0mm)且实现了低直流电阻与高额定电流,并有助于电源电路的高效率化。通过融合TDK在磁头业务中培养的薄膜技术以及在被动元件中培养的材料流程技术,并采用TDK独有的导体形成技术
[汽车电子]
TDK车载用<font color='red'>电源系统</font>薄膜电感器的开发与量产
基于UC3842的开关稳压电源系统设计
  随着电力电子技术的发展,电源装置大量出现在生产生活的各个领域,其电压电流的稳定性、电压调整率、负荷调整率、变换器的效率等因素将直接影响到用电及通信设备的正常运行,严重时还将影响到设备的安全性。因此,如何改善上述各项指标,成为电源装置设计时需要考虑的重要因素。本文介绍一种行之有效的开关稳压电源的系统设计方案。   1 方案论证   1. 1 DC-DC 变换器方案选取   隔离变压器输出工频电压有效值为18 ± 3 V,经桥式整流滤波后输出直流电压约为18 ~ 26 V。要求开关电源的输出电压范围在30 ~ 36 V 之间稳定可调,单端反激式和Boost 直接变换式都可以满足要求。但是,考虑到单端反激式开关电源
[单片机]
基于UC3842的开关稳压<font color='red'>电源系统</font>设计
新型车载电源系统的发展概况及研究
引言 随着汽车工业的迅猛发展,人们对汽车的安全性、环保性、经济性、舒适性等性能追求也日益增高。从而促使车载电器和电子装置迅速增加,例如采用电磁或电动执行器取代液压传动和气压传动执行器已成为一种趋势,这使车载电源提供的电功率越来越大,更新车载电源系统已是大势所趋。车载电源系统主要由蓄电池、发电机及电压调节器等组成,蓄电池和发电机并联于汽车电路之中,发电机是主要电源,蓄电池是辅助电源。要提高车载电源的电功率,自然就要从蓄电池和发电机两方面着手。为此,本文就车载电源系统做出以下探索。 1 传统车载电源系统的存在问题 目前豪华轿车用电一般1~3KW功率,而到2010年高级轿车的使用功率将达到10KW以上,如仍
[电源管理]
PDA电源系统的设计挑战及解决方案
  如今,由电池供电的PDA将遇到来自电源管理方面的严峻挑战,因为各种能量饥渴型功能正不断被添加到PDA上,而其电池工作时间仍需要保持在一个合理的水平上,并且电池体积和重量还要保持不断变轻变小的趋势。这就要求高效的能量转换、电池充/放电周期的精确控制、以及尽可能多地采用省电运行模式。但即使采取了这些措施,PDA制造商仍在研制更高容量的电池,以满足负载不断增长的要求。能量密度是电池选用考量的首要因素。锂离子电池的能量密度由于比其最接近的竞争对手还高1倍,因此它实际上已经成为所有PDA当仁不让的选择。 三个关键领域的电源管理技术探讨   电源管理(PM)模块负责整个PDA系统的电源供给和管理。图1勾勒出了PM模块的框架,PM
[电源管理]
PDA<font color='red'>电源系统</font>的设计挑战及解决方案
关于电源系统的B类保护和C类保护
摘要:本文主要介绍了低压配电系统中B类和C类防雷保护的区别、作用和避雷器产品的一些选型方法,介绍了一种新型火花间隙避雷器的工作原理,对不同特性的B类保护避雷器作了较多的分析和对比,使广大读者对B类和C类保护避雷器有一个全面的认识和了解。 关键词:特征能量解耦电感额定通流容量残压避雷器 通常把电源系统的防雷保护划分为B类保护和C类保护。B类保护的主要作用是要处理掉强大的雷电电磁脉冲干扰,抵御直击雷的闪击,C类保护主要的作用是完成经过B类粗保护后的精保护工作,将电源系统的瞬态过电压限制在电器绝缘许可的范围内。通常这两级的协调配合,能大大提高电源系统的防雷保护水平,使设备在雷雨季节工作起来更加安全可靠。 1C类保护
[电源管理]
关于<font color='red'>电源系统</font>的B类保护和C类保护
全员实动·齐心协力·业绩攀新·再创辉煌—奥特迅电源系统事业部2017年度销售工作会议成功召开
  深圳奥特迅电力设备股份有限公司电源系统事业部2017年度销售工作会议于2017年3月28日召开。电源系统事业部总经理郭凤泽、销售总监刘宇峰、技术总监王文东及全部十二区域销售人员共58人参加会议。   会议为期两天,含工作会议、商务及产品培训、户外拓展训练等内容。事业部总经理郭凤泽、销售总监刘宇峰分别发表了演讲,总结和分析了2016年的行业形势及工作中出现的管理、销售等问题,对2017年的工作做出规划和展望,提出了“创新、团结、拼搏”的核心精神,指出加强客户管理、扩大市场范围、加大产品创新才能在当前的行业环境中迎来更多机遇。   会议首次采取了各区域总监上台进行经验分享的模式,各位销售精英分别对2016
[新能源]
ADI数字电源系统管理功能的双通道 10A µModule 稳压器
ADI宣布推出 Power by Linear™ LTM4686,该器件是一款双通道 10A 或单通道 20A 超薄型降压型 µModule® 稳压器,具有一个 PMBus 接口,采用 16mm x 11.9mm x 1.82mm LGA 封装。1.82mm 的封装高度使得 LTM4686 在 PC 板上可放置到非常靠近其负载 (例如 FPGA 或 ASIC) 的地方,同时两个扁平封装器件可共用一个散热器。超薄型封装使 LTM4686 还能够安装在 PCB 的背面,从而省出正面空间以用于放置存储器和收发器 IC 等组件。这使得 LTM4686 适合高度受限的应用,例如机架安装的电信交换器和路由器、RAID 系统以及测试和测量设备。
[电源管理]
ADI数字<font color='red'>电源系统</font>管理功能的双通道 10A µModule 稳压器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved