三相电供电常见故障解析及改善方案

最新更新时间:2015-02-11来源: 互联网关键字:三相电  改善方案 手机看文章 扫描二维码
随时随地手机看文章
在电力系统中由于电源设计不合理导致的设备故障时有发生,所以对供电电路的可靠性、稳定性提出了更高的要求。传统的供电电路多采用工频变压器加后级降压电路来实现。由于近年来三相电供电故障频发,为了很好的解决三相电供电出现故障后,供电系统仍能稳定可靠的为电力检测设备供电。许多电源厂家推出电力专用的的高频开关电源,这种电源具有许多优点:安全、可靠、体积小、重量轻、综合效率高以及噪音低等优点,非常适应电网设备的应用,目前很多大型设备厂家已开始批量使用。

 

 

一、三相电供电常见故障分析

我国供电大多都采用三相四线供电方式。下图为三相四线制示意图,从图中可以看出此种供电方式可以提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。三相四线制供电较为理想的状态是三相负载平衡,此时中线电流为零,从理论分析此时中线可有可无,不影响设备的正常运行。但现实情况三相平衡只是相对的,不平衡则是绝对的,所以现实应用中的中线是必须有的,这样才能保证各相电压的稳定输出。随着经济的发展,用电器大幅度增加,单相短路几率必然升高,单相短路和瞬间短路引起零飘过电压问题及为普遍。下面我们针对此一些常见故障问题进行分析,为我们设计电力设备供电系统时提供方向,从而使供电系统稳定可靠的运行。

 

 

图1 三相电压示意图

1、单相短路故障

现在很多场合为了取电方便,直接采用三相电的相电压供电。包括目前很多农村电网设计都是将三相电中的三相平均分给三组用户使用,从而省掉了三相变压器。这种供电方式虽然节省了一些设备的投入,但是对用户的用电设备带来很大隐患。在实际应用中,单相短路接地故障发生的概率最高可达65%,两相短路约占10%,两相短路接地约占20%,三相短路约占5%。下面简单分析一下单相短路的威胁。

 

 

图2 三相电单相短路示意图

如上图所示,一旦出现单相短路现象,会抬高中线电位,对用电人员的安全有较大威胁(有零线接外壳保护的设备)。同时在短路瞬间,负载2与负载3需要承受瞬间大电压冲击,严重时电压值直接上升到线电压(380VAC)。致使用电设备出现过电压损坏现象。

2、输电线中线开路

在实际用电环境环境中,往往会由于线路安装不当,或熔断器及开关安装位置不当,导致中线断开。如果中线断了,三相负荷中性点电位就要发生位移。中性点电位位移直接导致各相的输出电压不平衡,而相电压太高会使设备过电压而直接烧毁,而相电压偏低的相,可能会由于电压降低,电流增大而损坏设备。由于三相电电压计算非常复杂,由于负载矢量的引入,最终详细计算公式也异常难懂。下面以一种简单的方式解释一下中线短路对线电压的影响。

 

 

图3 三相电中线开路示意图

如上图,假设负载3开路,同时中线出现中断。此时负载1与负载2串联后接在线电压UUV(380VAC)上,两个负载上的电压主要取决于Z1与Z2的大小。若Z1远远大于Z2时,则负载1的的电压会接近与380VAC的线电压,此时负载1就很可能由于过电压而损坏,而负载2可能会由于电压过低而停止工作。在正常情况下,相电压之间影响较小,可正常使用。

3、设备供电中线开路

电力设备除了输电线容易出现故障外,设备电源输入及插座等出现故障也有可能使设备出现损毁。由于大多数场合均采用三相四线制电源,同时三相四线制电源还有一个比较特殊的应用,及采用三相四线制全波整流时,只要任何一相有电设备均能正常运转。

 

 

图4 供电设备中线开路示意图如上图所示,三相四线制全波整流,此电路好处在在三相电任意两相出现问题时,此供电电路任然可以继续工作。但是一旦整流电路中的中线中断或则未连接,此电路就变为三相三线制整流电路,此时电压有原来310VDC升高到538VDC,若后级设备无法承受538VDC高压,将后损坏后级设备。

二、三相电供电改善措施

由于在实际应用中有较多限制,不可能避免很多电力故障的发生,但我们能可以通过一些手段减少设备损坏概率,从而提升产品的可靠性。具体改善措施如下:

1、单相短路故障改善措施

此故障可适当提高电源输入端的抗冲击能力,一般需要抗335VAC冲击。这样可以在瞬时短路时,保护到后级电路不会因过电压而损坏。为了减小因零飘而照成的电压升高,可适当加大零线截面积,降低零点飘移,来缩小另外两相电压抬高幅度。

2、输电线中线开路改善措施

从故障分析我们可以看出,中线开路主要是影响到相电压的电流回路,使电流未能回到中性点。只能通过两根相线形成回路,从而增加了设备过电压的风险。为了给相电压提供可靠的电流回路,在布线中可采取三相三零六线供电方式,三相三零独立工作。此布线缺点是增加零线投资和线损,但这样能有效抑制零飘,减小了每相电压的相互影响。

3、设备供电中线开路改善措施

一般设备采取三相四线全波整流电路,主要是考虑其供电的冗余设计,只要三相电任意一相电设备就能正常工作。但是一旦在中线未连接上设备,整流电路电压就会急剧升高。解决此问题,需要在电压升高时切断后级电路,从而保护后级电路不受损坏。但在设计时需保证检测控制电路稳定供电。

三、从根源解决电力系统供电故障

随着社会的发展,用电设备的功率逐渐增加,同时各种设备质量也参差不齐。这些设备不但对电网形成了较大干扰,而且还存在较大的短路风险。电力故障诱因很多,不可能做到完全避免其发生。但是一旦故障发生后,我们需要及时反馈并处理。此时就需要有电力检测设备对电网实时检测,并在故障发生时采取必要措施,避免造成更大损失。

 

 

图5 电力检测设备示意图

在电网在出现异常时,电力检测设备仍需要保证正常工作。此时电力系统的供电设计就显得尤为重要。供电系统需要保证在大多数电力故障发生时,其仍能为电力检测设备提供稳定的电能。电力故障一般表现为:缺项运行、单相电压飘高、电路过负载电压拉低、中线开路、雷击事故等。故此供电电源需要较宽的电压输入范围及较强的抗扰度。我司立足于解决此类供电问题,特推出PD2IHBxxD-10W系列电源,共有4种电压输出可供选择。为客户快速解决供电问题提供了一种选择机会。下面是此系列电源的简单介绍。

PD2IHBxxD-10W产品特点:

转换效率高达83%;

输入电压:56~700VDC;

输出电压:5V,12V,15V,24V;

工作温度:-40℃~+85℃;

Enable(EN)控制功能 ;

隔离电压:4000VAC;

可持续短路并自恢复,具有过温保护功能;

单相电路应用特点:单相电路简单,可适应市电大幅的电压波动。

 

 

三相三线应用特点:适合没有中线的场合,任意一根相线开路,电源仍可继续工作。

 

 

三相四线应用特点:此电路最大优点是,三相冗余供电,电路再缺相时仍可稳定工作。

 

关键字:三相电  改善方案 编辑:探路者 引用地址:三相电供电常见故障解析及改善方案

上一篇:AC/DC电源的性能和国际能效标准
下一篇:UCC2870初级控制反激式电源控制器启动性能解析

推荐阅读最新更新时间:2023-10-12 22:52

如何用最简单的办法测量三相电机好坏
判断电动机的好坏其实有很多方面,具体判断简单一点的有下面几点,供大家参考。 首先,总结一下如何判定三相异步电机线圈的好坏,要用什么仪表检查: 1、万用表:用于检查电机线圈通断的测量。 2、单臂电桥 :精确测量线圈电阻,可以知道每相线圈的电阻是否接近。 3、兆欧表:用于测量电机相间及相间对地的绝缘电阻,不小于0.5兆欧。用500V兆欧表测绝缘电阻大于0.5M说明是好的,低于0.5M说明电机坏了,但这只是外观判断,对于匝间短路相间击穿只有拆开解体检查。 电动机的故障无非就是两大块:机械和电气。 电气方面 1、三相直流电阻是否合格,用双臂电桥测量。 2、绝缘电阻是否合格。 3、转子是否断条,电动机的直流电阻是判断电动机的
[测试测量]
三相电源相序/缺相检测器
  本文介绍的三相电源相序/缺相检测器,主要用来检测三相交流电源的接线是否缺相以及相序是否正确。电路原理如附图所示,图中,若A相(1)、C相(3)、B相(2)分别连接至可控硅A、G、K极时,可控硅T将在单相半个周期内导通,发光二极管将发出正常亮光,当连接A、B、C三相的相序不正确时,可控硅T的导通时间将会变短,平均电流随之减小,LED亮度也就大为降低。 当三相交流电缺(断)其中一相或两相时,可控硅截止,LED熄灭,图中R3、R4和C的数值将决定延时时间t的长短。
[电源管理]
F433三相电能质量分析仪的应用功能与特点分析
福禄克公司的F434 和F433三相电能质量分析仪可以帮助用户定位、预测、防止和诊断配电系统的故障。对于那些维护或排障三相配电系统的工作人员来说,这些简便易用的手持工具是“必不可少”的。新的IEC和GB国标关于闪变和电能质量方面的标准使得在对系统进行电能质量分析监测时有了判断的依据。 产品特点: ·记录三相系统中所有电能质量的参数。 ·直观的菜单,最大程度上减少所需的设置。 ·工业现场使用最高的安全等级。 ·四个电压通道和四个电流通道。 ·同时在所有相线上捕获波形数据。 ·系统监测:在一个仪表板上现实全部电能质量参数。 ·自动显示瞬态尖峰脉冲信号:不会漏掉任何一个事件。 ·自动趋势绘图(AutoTrend)功能:无需对记录进行
[测试测量]
三相电压源型高频链逆变技术
现代逆变 电源 主要向如下几个方向发展,如高频功率变换、交流侧单位功率团数、低电磁干扰、体积小重量轻、双向功率流等。单相高频链技术已经得到了广泛的发展和应用,随着应用场合范围的扩大和对功率要求的提高,三相高频链技术也开始被重视并发展,主要是改进 控制 方法来降低功率损耗。 三相高频链典型的 电路 结构如图8所示,由电压源逆变器、高频变压器和周波变换器组成。逆变器输出高频电压,变压器将高频输入和输出进行隔离,周波变换器提供三相脉宽调制电压。逆变器是由4个ICBT和4个反并联二极管以单相桥方式组成,周波变换器是由6个双向 开关 管以三相桥方式组成。 为了获得正弦输出,专家和学者们提出了许多不同的方法,如正弦波脉冲
[模拟电子]
<font color='red'>三相电</font>压源型高频链逆变技术
三相电压型单位功率因数整流器的新型间接电流
摘要:基于三相电压型PWM整流器主电路参数和控制参数间的稳态关系,提出一种新的间接电流控制方案。该方案不需检测电源电压,因而使得硬件和成本都得到减少。最后通过仿真验证了该方案。 关键词:三相整流器;功率因数校正;间接电流控制 图1三相电压型整流器主电路拓扑 1引言 三相电压型PWM整流器的控制方式可分为直接电流控制和间接电流控制。间接电流控制 又称幅值相位控制(PAC),它对PWM整流器输入电流进行开环控制。尽管间接电流控制的动态响应不及直接电流控制,但由于它开关机理清晰,不需要电流传感器和电流控制回路,故控制简单,所需成本低,因而在对PWM整流器动态性能要求不太高时,PAC控制仍有一定的
[电源管理]
<font color='red'>三相电</font>压型单位功率因数整流器的新型间接电流
不对称三相电
如果三相电路中有三相不对称电源或三相不对称负载,则成为不对称三相电路。不对称三相电路没有上节所述的特点,不能用单相图进行计算。一般情况下不对称三相电路可看成复杂交流电路,可用一般复杂交流电路方法分析计算,或用其它方法如对称分量法等进行分析。本节仅用一个简单例子来分析不对称三相电路的基本概念。 图4-4-1所示三相电路,假设 、 、 为一组三相对称电源,负载阻抗 Z A 、 Z B 、 Z C 不相等,因此它是不对称三相电路。如果采用三相四线制供电,且中线阻抗可以忽略,则由图可见,负载各相电压即等于对应的电源相电压。因此可得各相电流为 由于负载不对称,因此三相负载电流也不对称。其中线电流 一般也不为零。
[模拟电子]
不对称<font color='red'>三相电</font>路
用单片机测量三相电网功率因数角的测量原理
  本文介绍使用8031单片机测量三相电网功率因数角的原理、接口电路和程序实现。经实践验证,测量准确、稳定。         本方案所用的检测输入信号为线电压与线电流,即UCA与IB,或UBC与IA,或UAB与IC。这是因为它们之间的夹角θ和待测相角φ之间具有线性对应关系。现以UCA与IB为例,表明其夹角θ与相角φ间对应关系的矢量图如下图所示。 ●容性:0= 90°-0°,r=T/4~T/2,纯容性时,θ=0°,T= T/2。 从上述分析得知,只要测量时间r,便可间接测量相角c。
[单片机]
用单片机测量<font color='red'>三相电</font>网功率因数角的测量原理
大陆和Elektrobit推出新解决方案改善汽车嵌入式语音体验
6月15日,可持续和互联出行技术服务供应商大陆(Continental)与其子公司Elektrobit(EB)宣布在汽车嵌入式语音体验方面取得重大进展。通过此次合作,双方将大陆集团的汽车电子和EB的软件专业知识相结合,并凭借EB的软件和集成服务,首次将Alexa定制助手集成到至大陆集团的驾驶舱高性能计算机(Cockpit High Performance Computer)中。亚马逊Alexa定制助手是一种综合解决方案,可让汽车制造商获得Alexa的高级AI,以创建自己的品牌智能助手。 (图片来源:Elektrobit) 将Alexa定制助手集成到量产车中意义重大,因为汽车制造商可将该方案作为完全集成的数字驾驶舱的一部
[汽车电子]
大陆和Elektrobit推出新解决<font color='red'>方案</font> 可<font color='red'>改善</font>汽车嵌入式语音体验
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved