如何利用高电流栅极驱动器实现更高的系统效率

最新更新时间:2017-01-12来源: EEWORLD关键字:德州仪器  驱动 手机看文章 扫描二维码
随时随地手机看文章

作者:Yvette

当今世界,设计师们似乎永远不停地在追求更高效率。我们希望以更低的功率输入得到更高的功率输出!更高的系统效率需要团队的努力,这包括(但不限于)性能更高的栅极驱动器、控制器和新的宽禁带技术。

特别是高电流栅极驱动器,其能够通过降低开关损耗帮助提升整体系统效率。当FET开关打开或关闭时,就会出现开关损耗。为了打开FET,栅极电容得到的电荷必须超过阈值电压。栅极驱动器的驱动电流有助于栅极电容的充电。驱动电流能力越高,电容的充放电速度就越快。拉灌大量电荷的能力可以降低功率损耗和畸变。(传导损耗是另一种FET开关损耗,传导损耗取决于内部电阻或FET的RDS(on)值,其中,随着电流通过,FET也会耗散功率。)

换言之,目标是减少系统内需要高频率功率转化的开关过渡时间。突出该类性能的栅极驱动器规格为上升和下降时间。参见图1。

QQ图片20170112191005.png

图1:典型的上升和下降时间图

如果想更进一步,诸如延时匹配等栅极驱动器特性,能有效地让驱动电流能力翻番。延时匹配指两个通道之间内部传播延迟的匹配,可以通过双通道栅极驱动器的并联输出或将两个通道捆绑在一起实现。例如,TI的UCC27524A具有极其精确的1ns(典型)延迟匹配,可以将驱动电流从5A提升到10A。

图2所示为UCC27524A的A通道B通道结合在一个驱动器中的范例。INA和INB输入以及OUTA及OUTB分别为串联结构。由一个信号控制该并联组合。


QQ图片20170112191015.png
图2:串联输出UCC27524A以使双驱动电流能力翻番

系统效率提升带来的结果之一便是功率密度的提升。在隔离电源的功率因数校正(PFC)及同步整流块、直流/直流模组及太阳能逆变器等应用中,设计师需受到以相同尺寸(或更小尺寸)实现相同输出功率量的约束,因此,对更高功率密度的需求已经成为一种趋势。

TI的产品组合包括带高电流、快速升降时间和延时匹配的栅极驱动器。参见表1。


QQ图片20170112191027.png

关键字:德州仪器  驱动 编辑:冀凯 引用地址:如何利用高电流栅极驱动器实现更高的系统效率

上一篇:东芝新的步进电机驱动器IC降低电机噪声和振动
下一篇:如何实现更高的系统效率——第二部分:高速栅极驱动器

推荐阅读最新更新时间:2023-10-12 22:57

德州仪器推出超小型12位500至900MSPS ADC
德州仪器 12 位 500 至 900 MSPS ADC 可在提供最高性能的同时,将板级空间锐降 80% 日前,德州仪器 (TI) 在国际微波讨论会 (IMS) 上宣布推出 12 位 500 至 900 MSPS 模数转换器 (ADC) 系列,其可在提供行业领先信噪比 (SNR) 与无杂散动态范围 (SFDR) 的同时,将板级空间锐降 80%。该 ADS5409 系列可在显著缩小的尺寸以及最低的功耗下提供业界最佳性能,能够充分满足测量测试设备、宽带 LTE 与 LTE-Advanced 通信基站、毫米波回程(v 频带与 e 频带)、线缆基础设施返回路径以及国防电子等应用对尺寸、功耗及性能的需求。 宽带 LTE
[模拟电子]
<font color='red'>德州仪器</font>推出超小型12位500至900MSPS ADC
LED驱动电源知识集锦
  什么是LED驱动 电源   LED驱动电源把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子 变压器 的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。    LED驱动电源   按驱动方式分类   (1)恒流式   恒流驱动电路输出的
[电源管理]
LED<font color='red'>驱动</font>电源知识集锦
基于PIC16单片机对24X24 点阵屏驱动设计
花了几天时间,弄出个小东西,虽然有很多种实现方式在网上流传了,但我却从没有试过,乘有时间,也弄出了四种方式的显示,各位帮忙看看,哪里还有不好的地方,希不吝指教。 一。原理及仿真图 此种为从右往左显示。 此中为从左往右显示 此种为从下往上显示 此种为从上往下显示 原理图说明: 1. 本实例采用微芯 PIC16F877A 单片机,此单片机适合初学者 2. 点阵采用 24X24 点,左边为行线,采用 U1-U3 三个 74LS373 地址所存芯片,复用单片机 RB 端口。 右边为列线,采用 U4-U6 三个 74LS373 地址所存芯片,复用单片机 RD 端口。 3
[单片机]
基于PIC16单片机对24X24 点阵屏<font color='red'>驱动</font>设计
ARM-Linux驱动-触摸屏驱动分析
硬件平台:FL2440 内核版本:2.6.28 主机平台:Ubuntu 11.04 内核版本:2.6.39 1、下面是ADC和触摸屏接口的模块图 当触摸屏接口使用时,XM或YM接触摸屏接口的地 当触摸屏接口不使用时,XM或YM接模拟信号,做普通ADC使用。 2、触摸屏接口的几种操作模式 (1) 正常转换模式 通过设置ADCCON(adc控制寄存器)来完成初始化,并对ADCDAT0数据寄存器进行操作。 (2) 分离XY坐标模式 X坐标模式写X坐标转换数据到ADCDAT0,触摸屏接口产生中断到中断控制寄存器。Y坐标模式写Y坐标转换数据到ADCDAT1,触摸屏接口产生
[单片机]
ARM-Linux<font color='red'>驱动</font>-触摸屏<font color='red'>驱动</font>分析
如何将驱动器与MOSFET进行匹配
当今多种 MOSFET 技术和硅片制程并存,而且技术进 步日新月异。要根据 MOSFET 的电压 / 电流或管芯尺 寸,对如何将MOSFET驱动器与MOSFET进行匹配进 行一般说明,实际上显得颇为困难,甚至不可能。 与任何设计决策一样,在为您设计中的 MOSFET 选择 合适的 MOSFET 驱动器时,需要考虑几个变量。需要 考虑的参数至少需要包括输入至输出的传输时延、静态 电流、抗闭锁和电流驱动能力。驱动器的功率消耗也影 响着封装的决定和驱动器的选择。 本应用笔记将详细讨论与 MOSFET 栅极电荷和工作频 率相关的 MOSFET 驱动器功耗。还将讨论如何根据MOSFET 所需的导通和截止时间将 MOSFET 驱动器的 电
[网络通信]
高通AP拟整合Rx芯片,TI无线充电霸主堪忧
德州仪器(TI)无线充电晶片霸主地位正遭受应用处理器厂商(AP)威胁。随着高通(Qualcomm)先后宣布加入无线充电联盟(WPC)与电力事业联盟(PMA)后,该公司将无线充电接收器(Rx)整合至处理器的企图心已愈来愈明显,一旦相关产品推出,势将对德州仪器在无线充电晶片的市占率造成不小冲击。   致伸技术平台资深经理丘宏伟表示,未来处理器业者将接收器整合后,势必将造成无线充电晶片市占率排名重新洗牌。   致伸技术平台资深经理丘宏伟表示,从高通目前一次跨足三大无线充电标准阵营的动作,即可看出该公司亟欲掌握每一个标准联盟的最新动态,藉此观察不同标准规格的市场发展走向,以利未来该选择何种标准进行元件整合,并透过此一布
[电源管理]
高通AP拟整合Rx芯片,<font color='red'>TI</font>无线充电霸主堪忧
卖LCD驱动IC厂赚了,MCU龙头瑞萨史上首度赚钱
全球最大微控制器(MCU)厂商瑞萨电子(Renesas Electronics)5日于日股盘后发布新闻稿宣布,因日圆走贬、出售中小尺寸液晶面板用驱动IC研发/销售子公司 Renesas SP Drivers(以下简称RSP) 提列相关获利,加上固定成本删减措施奏功,故预估今年度(2014年4月-2015年3月)合并纯益将达740亿日圆(上年度为净损52亿日圆),将为史上(2010年由NEC电子、瑞萨科技合并以来)首度摆脱亏损局面;合并营益预估将大增44.9%至980亿日圆,合并营收预估将年减5.6%至7,860亿日圆、其中半导体事业营收预估将年减6%至7,480亿日圆。 此为瑞萨首度公布今年度财测预估。瑞萨表示,上述财
[电源管理]
使用LX7720的电机驱动器:将LX7720连接到双极步进电机
随着空间系统开发人员不断努力减小关键模块和元件的尺寸、重量和功率,他们还需要更高性能、抗辐射和耐辐射的组件来增强系统设计。新技术 - 例如更轻,更高集成的卫星电机控制电路 - 可以承受极端空间环境并优化航天器性能。 LX7720航天器电机驱动器经过设计,经过抗辐射处理。它是空间场可编程门阵列(FPGA)的配套集成电路(IC),例如Microchip的RTG4 FPGA和RT PolarFire® FPGA,或空间微控制器(MCU),例如Microchip的SAMRH71F20或SAMV71Q21RT。LX7720 中集成了电流检测器、旋转变压器、编码器和霍尔效应编码器接口,减少了电路板空间和重量,同时提高了使用线圈电流反馈和转
[嵌入式]
使用LX7720的电机<font color='red'>驱动</font>器:将LX7720连接到双极步进电机
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved