全固态电池中界面问题为何一直未能有效解决

最新更新时间:2018-04-07来源: 高工锂电技术与应用关键字:电源管理  固态电池 手机看文章 扫描二维码
随时随地手机看文章

目前限制全固态锂电池应用的主要问题是电池的能量及功率密度低,而决定电池能量及功率密度的主要因素包括电极材料、电解质材料和二者的界面的特性。

《中国制造2025》确定的技术目标是2020年锂电池能量密度到300Wh/kg,2025年能量密度达到400Wh/kg,2030年能量密度达到500Wh/kg。

目前市场上用的液态电解质体系的电池能量密度约250wh/kg,也有少部分的企业宣称达到了300Wh/kg的目标,但是这都是耗费了大量的精力在材料选型、电解液调整、结构设计上的,可能牺牲了部分的电池稳定性和寿命。如果想要达到更高的能量密度,在未来达到《中国制造2025》确定的技术目标,则需要在革命性的正负极材料、电池体系上进行革新。

固态电池是被看做下一代最有希望替代液态锂电池的动力来源。固态电池与现有量产的动力电池相比,采用了固态的电解质。不同于液态电解质易燃的特征,固态电解质不可燃、无腐蚀、不挥发、不存在漏液问题,在高压下更稳定,允许电池在高电压下工作,这样就会很大程度地提高锂电池的比能量和安全性。

一、全固态电池存在的问题

目前限制全固态锂电池应用的主要问题是电池的能量及功率密度低,而决定电池能量及功率密度的主要因素包括电极材料、电解质材料和二者的界面的特性。在无机化学领域,众多大师已经将无机电解质研究了个遍,这为锂电池电解质的选择打下了结实的基础。

例如,最近无机硫化物固态电解质就因为其高的离子电导率而备受关注。其离子电导率可以与有机液态电解质相媲美了。但是,全固态电池中的界面问题一直未能有效解决。

界面问题:

电解质由液态换成固体之后,锂电池体系由电极材料-电解液的固液界面向电极材料-固态电解质的固固界面转化。区别在于,固固之间无润湿性,其界面的更易形成更高接触电阻。固体电解质/电极界面存在难以充分接触、组分相互扩散甚至反应及形成空间电荷层等现象,造成全固态锂离子电池内阻急剧增大、电池循环性能变差。

关于如何在活物质和固态电解质之间建立紧密的结合,目前有三种方式:

一是利用脉冲激光沉积,该方法虽然效果较好但是处于实验室阶段,而且想要用此种方式进行规模化生产时不切实际的。

二是行星球磨技术,利用该种方式虽然可以实现大规模量产,但是粉体之间相互摩擦,颗粒破坏不可避免,材料结构的破坏对电池的负面影响不言自明。

三是热压技术,热处理会破坏固态电解质,所以目前还没有特别理想的方式。

二、固态电池中界面问题的解决

1.原理

近日,《Powder Technology》上刊登了一篇文章,Takashi Kawaguchi利用一种冲击-混合设备对电解质和活物质的界面接触问题进行了研究。该设备的原理如图1所示。

           

图1.冲击-混合设备的原理图,a前视图b侧视图

其目的是利用混合设备通过干法包覆的形式,以较大颗粒的正极材料(NCM11)为宿主颗粒,以较小颗粒的电解质颗粒为寄宿颗粒,将小颗粒包覆在大颗粒表面。考虑到经济问题,研发者使用了一种硫化物电解质的模型颗粒材料硫酸钠。两种原材料的形貌是这个样子的:

图2.(a)NCM111的SEM(b)Na2SO4的SEM

颗粒分析结果显示,NCM颗粒中位径为5.4μm,硫酸钠为0.95μm。NCM颗粒是刚性的且易碎的,而硫酸钠颗粒正好相反具有相当的韧性。NCM作为混合导体,具有导电性而硫酸钠是不导电的。同时,经过压痕实验也确认了硫酸钠的机械性能和硫化物电解质((75 mol%Li2S·25 mol%P2S5)是相仿的。

2.实验方式和结果

a.形貌特征的不同

采用三种混合方式进行了对比:A.简单的振动混合B.研磨混合C.研磨混合后用冲击-混合干法包覆。如图3所示。

图3.实验方式

通过以上三种方式将NCM三元材料和硫化物固态电解质模拟颗粒进行混合之后,将三种方式获得的颗粒物进行相应的场发射扫描电镜分析和能量色散X射线光谱仪分析,分析结果如图3所示,可以看出:

(1)第一行是三种混合物的电镜图片,可以看出振动混合后,三元材料和硫酸钠没有很好的混合,硫酸钠出现了大块的团聚物。经过研磨混合后,虽然团聚物有所减少,但是还是在三元材料颗粒表面呈堆积状,没有很好的包覆在其上面。包覆效果最好的是第三种干法包覆方式,硫酸钠均匀地包裹在三元颗粒表面。

(2)第二行图片和第三行图片分别代表混合颗粒中S和Mn的映射图片,代表着硫酸钠和三元材料在混合颗粒中的分布状态。可以看出,其包覆结论和(1)是相吻合的。研磨后进行冲击-混合的干法包覆的颗粒表面有均匀连续的硫酸钠颗粒存在。

图4. 三种不同粉体的FESEM和EDX图像

那么,通过以上的分析结果可以得到第三种方式可以很好的解决电解质和活物质之间的紧密接触问题。为了验证这样的混合强度会不会对活物质颗粒造成破坏,将C粉末中的硫酸钠冲刷掉,如下图所示可以看到三元颗粒表面还是如最初的状态一样,是完整的。

同时,将粉末C进行剖面分析,可以看到NCM颗粒表面有连续的层状物质硫酸钠存在,厚度约为0.5μm。种种结果均显示,这样的混合设备并不会破坏电极材料的颗粒完整性和形貌特征。电解质和电极材料混合后结构不被破坏,这对电池性能来说是很重要的。

图5.C粉末在冲刷掉硫酸钠后的SEM图片(a)低倍率下(b)高倍率下 

图6. 粉末C颗粒的剖面FESEM和EDX图像

通过以上的分析结果,提出了干法包覆活物质的模型:最开始,经过研磨之后,寄宿颗粒硫酸钠粘附在宿主颗粒NCM111上。经过冲击、摩擦、混合,接着寄宿颗粒发生塑性形变和聚集,在此过程中不会损坏NCM的结构。这主要还是由两种粉磨的性质差异决定的,硫酸钠的韧性和延展性正好适合用来包覆刚性和脆性的活物质颗粒。

b. 电阻系数的比较

文章刚开始时就介绍了电解质和活物质颗粒的性质,电解质是不导电的,而活物质是导电的。这也就意味着,活物质颗粒如果被硫酸钠颗粒包覆的越好,颗粒的电阻系数就越大。将粉末A、B、C在360Mpa的压力下压制成片状,进行电阻系数分析,具体的分析结果见图7所示。

图7. 电阻系数分析结果

从图7中可以清晰看出,硫酸钠颗粒的电阻系数最高,随后是粉末C-粉体B-粉体A,最好NCM颗粒的电阻系数最低,这意味着粉体C的包覆效果最好,其结果与上述的SEM、EDX、FESEM结果是相同的。

将粉末A、B、C在360Mpa的压力下压制成片状,分别进行FESEM和EDX分析,图片如图8所示,其中深灰色为硫酸钠,浅灰色为NCM。可以看到粉末A中,大面积的NCM团聚在一起,硫酸钠颗粒也没有包裹在NCM表面。同样在EDX分析结果中看到,三个粉末样品中,C粉末中硫酸钠紧紧包裹在NCM表面,也同样验证了此种混合方式的可行性。

图8.三种粉末压缩后的截面进行FESEM和EDX分析

为了对三种粉体的混合程度进行量化的比较,而不是单纯的肉眼观察,利用统计办法对压缩片中NCM-NCM间的接触数目进行累加比较,得到图9的结论。可以看出对于粉末C中,60%的NCM是没有与NCM直接接触的,电解质与电极材料的接触效果远远好于粉末A和B。

图9.压缩丸截面中每个NCM颗粒的NCM-NCM接触点

三、结语

通过寄宿颗粒(电解质)干法包覆宿主颗粒(活物质)的方法可以制备出连续的,均匀的电解质涂层。同时,此种方法并不会造成宿主颗粒的破坏,电解质颗粒可以均匀分散开,并降低混合粉末的孔隙率,完成了电解质和电极材料的紧密接触。两种颗粒的紧密结合,能够有效降低界面电阻,提高锂离子的迁移速率,这也代表全固态电池可以拥有更好的电化学性能。

当然,这个学术文章只是在实验室的条件下针对模拟电解质颗粒与电极材料的接触展开的,全固态电池在充放电反应中还存在更复杂的情况,例如热处理中出现的元素相互扩散、充放电体积效应等,全固态电池的量产还需要时间和技术的积淀,面临的问题会更多。

关键字:电源管理  固态电池 编辑:王磊 引用地址:全固态电池中界面问题为何一直未能有效解决

上一篇:如何将双电源的电路转换成单电源电路
下一篇:介绍几个模块电源中常用的MOSFET驱动电路

推荐阅读最新更新时间:2023-10-12 23:01

从48V转换到3.3V,看电源转换器效率
对于需要从高输入电压转换到极低输出电压的应用,有不同的解决方案。一个有趣的例子是从48 V转换到3.3 V。这样的规格不仅在信息技术市场的服务器应用中很常见,在电信应用中同样常见。 图1. 通过单一转换步骤将电压从48 V降至3.3 V 如果将一个降压转换器(降压器)用于此单一转换步骤,如图1所示,会出现小占空比的问题。占空比反映导通时间(当主开关导通时)和断开时间(当主开关断开时)之间的关系。降压转换器的占空比由以下公式定义: 当输入电压为48 V而输出电压为3.3 V时,占空比约为7%。 这意味着在1 MHz(每个开关周期为1000 ns)的开关频率下,Q1开关的导通时间仅有70 ns。然后,Q1开关断开
[电源管理]
多媒体手机的电源管理分析
  手机电视、手机游戏以及音频播放等多媒体应用向手机中的电源管理设计提出了巨大的挑战。手机设计人员需要在加入新的多媒体功能的同时,保持手机小巧的外形并维持电池的长寿命。新应用处理器提供了出色的新功能,但代价是功耗更高。新的AV功能意味着音乐回放时间更长,由此音频放大的效率必需更高,从而延长回放时间。而且,当手机上的AV功能变得更成熟时,音频质量和输出功率的要求也会更高。在本文中,我们讨论了一些解决方案,可以帮助设计人员应对这些与新型多媒体手机电源和音频放大有关的挑战。   新应用处理器的电源   为了使手机外形小巧,使用集成电源管理单元(PMU)是非常普遍的。PMU的优点是简化了电源设计,而且与使用几个分立元件电源解决方案相比,减
[电源管理]
多媒体手机的<font color='red'>电源管理</font>分析
能量密度大增,比亚迪固态电池专利曝光,或2022年装车
新年伊始,1000公里续航及固态电池技术成为新能源行业热点话题。近日,根据国家知识产权局的信息,比亚迪最近获得了283项专利授权,其中也包括固态锂电池等技术。据悉比亚迪预计最早将于2021年量产固态电池,可能将于2022年装车。 根据专利摘要,比亚迪固态电池相关专利涉及提供一种正极材料,为核壳结构,所述核为正极活性物质,所述壳包括含锂过渡金属氧化物和Ti2O3,所述含锂过渡金属氧化物的离子电导率高于108S·cm1,高于3.0V电压下所述含锂过渡金属氧化物可脱锂生成氧化物,所述氧化物的电子电导率高于106S·cm1。 本发明还提供了正极材料的制备方法和固态锂电池。该正极材料可同时构建锂离子传输通道和电子传输通道
[汽车电子]
能量密度大增,比亚迪<font color='red'>固态</font><font color='red'>电池</font>专利曝光,或2022年装车
固态碱性电池!让手机告白爆炸
据外媒报道,美国创业公司Ionic Materials(以下简称“Ionic”)正在尝试改进碱性电池——这种电池主要用于手电筒和玩具等相对简单的电子产品中,不会被用来向计算机和电动汽车提供电能。下面就随电源管理小编一起来了解一下相关内容吧。 Ionic高管计划近日公布一项技术突破,使固态碱性电池能取代锂离子电池和其他高密度储能技术。 与目前的锂离子电池相比,碱性电池在制造成本和安全方面的优势要大得多,但它也有一个缺陷:不能充电。这一问题,再加上锂离子电池在储能方面的出色表现,意味着碱性电池不适合应用在个人计算机、智能手机或电动汽车中。 利用该公司开发的声称能充电数百次的新型碱性电池,Ionic能改变这种状况。Ionic新型碱性
[电源管理]
LinearLTC4000-1高压高性能多种电池充电解决方案
Linear公司的LTC4000-1是高压高性能转换器,能把许多外部补偿的DC/DC电源转换成全特性的电池充电器,并具有最大功率点控制.其最大功率点控制和太阳能板输入兼容,输入电压3V-36V,可编程充电精度±1%,可编程浮电压精度±0.25%,主要用在太阳能电池充电系统,高阻抗输入源如燃料电池或风能的电池充电器,工业电池设备或手持军用设备.本文介绍了LTC4000-1主要特性,框图和多种应用电路图. The LTC®4000-1 is a high voltage, high performance controller that converts many externally compensated DC/DC power s
[电源管理]
LinearLTC4000-1高压高性能多种<font color='red'>电池</font>充电解决方案
预计 2022 年模拟芯片总销售额将增长12%至 832 亿美元
在 2020 年因新冠导致全球经济衰退后,模拟半导体的销售额在 2021 年增长到了前所未有的30%至741亿美元,IC Insight预计 2022 年模拟集成电路市场又将实现两位数增长。 预计 2022 年模拟 IC 总销售额将增长 12% 至 832 亿美元,单位出货量将增长 11% 至 2387 亿美元。预计 2022 年模拟 IC 的平均售价将增长 1%。 IC Insights 的第一季度预测更新显示,模拟芯片的出货量在 2021 年上涨22%,达到 2151 亿颗的创纪录水平。强劲的需求和供应链中断共同促成了去年模拟 IC 的平均销售价格上涨了 6%。(在此之前,模拟平均销售价格增加的最近一次是 2004 年
[模拟电子]
预计 2022 年模拟芯片总销售额将增长12%至 832 亿美元
Maxim Integrated宣布就收购Volterra达成最终协议
• Maxim Integrated将以每股23美元收购Volterra Semiconductor • 此项交易的股权价值为6.05亿美元、企业价值为4.5亿美元 • Maxim预期此项收购将即刻提升GAAP每股盈余(特殊项目除外) • Volterra的产品线有助于提升Maxim在集成电源管理领域的领导地位 • 随着优秀工程师团队的加入,将带来经过巿场验证的成功经验 中国,北京,2013年8月16日。Maxim Integrated Products, Inc. (NASDAQ:MXIM)宣布就收购Volterra Semiconductor Corp. (NASDAQ:VLTR)达成最终协议,收购价为每股23美元,较Vo
[电源管理]
丰田汽车与出光兴产联手,推动全固态电池量产
10月12日,丰田汽车宣布与出光兴产(Idemitsu)已达成协议,将共同开发固体电解质的大规模生产技术,提高生产效率并建立供应链,以实现纯 电动汽车 全固态电池的大规模生产。 图片来源:丰田汽车 丰田汽车指出,通过此次合作,两家在全固态电池材料等领域处于世界领先地位的企业将确保全固态电池在2027至2028年成功实现商业化,然后进行全面量产。 在能源应用和材料方面,出光处于行业领先低位,加之丰田的多途径方法,将推动纯电动汽车的发展。至于支持纯电动汽车发展的下一代电池,出光自2001年以来一直致力于全固态电池的基本技术研发,而丰田则从2006年开始。 此次合作的重点是硫化物固体电解质。此种材料被认为很有前景,
[汽车电子]
丰田汽车与出光兴产联手,推动全<font color='red'>固态</font><font color='red'>电池</font>量产
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved