编辑点评:在谈及芯片技术进步时,除了不断缩小的技术节点,新材料的采用往往可以另辟蹊径。目前谈论较多的是高k介质、金属栅、低k材料等,其它一些较为冷门的材料,如碳纳米管、石墨稀、二嵌段共聚物等也开始进入人们的视野。越是新兴的物质越难以捉摸和测量,这就要求测量技术能够“与时俱进”。本文对新材料为测量带来的挑战进行了概述。
工艺技术的进步对测量意味着什么?在日前举行的2009纳米电子测量与表征技术国际会议上,与会者对新兴技术和材料为测量技术带来的挑战交换了观点。
首先是芯片尺寸已接近原子级和量子级,这已成为测量领域的一大难题。诸如不断增加的能耗、工艺和器件的多样性,以及器件和互连性能的降低等。对于工程师来说,及时获得工艺信息至关重要,检测手段必须足以满足工艺制程的发展。
对于高k/金属栅来说,主要的挑战是如何在实现一定性能的同时保证与标准CMOS制造的可兼容性。能够取代传统SiON材料的先进介质必须具有较高的电容率、良好的热稳定性、高迁移率、较低的隧穿效应和与金属电极的兼容性。与此趋势相应,测量技术的支持与发展是必要条件之一。如今,掩膜版检测必须与完整的光刻工艺相对应,以便及时预测可能在硅片上出现的缺陷。检测系统要能够提供复杂的照明,并与光刻机的精确结构匹配。
另一个比较热门的领域就是3D集成和硅通孔技术(TSV),它们将为芯片带来更小的尺寸、更低的能耗以及更强大的功能性,是半导体技术下一步发展的契机(图2)。
新材料、新器件和结构将促使测量技术继续发展,从而满足各种新现象的出现。在接近原子级的尺寸时,高k介质、金属栅和SOI被寄予厚望,极有可能满足16nm节点的要求。尽管某些新材料已经开始应用于IC制造,但是有关相应测量技术的研发仍在继续。Air gap和其它低k材料也在不断涌现。
经过多年的学术研究,人们很熟悉纳米碳管,更知道纳米碳管不好实用,至少很难在纳米电子学上应用。原因是纳米碳管很难并可重复地结合到电子器件中去。如果能将纳米碳管“切”开,并展开成性能稳定的平面,目前一流的集成电路微细加工技术就能用上,实现碳材料电子学(改进目前的硅材料电子学)。近年科学界重大发现--石墨烯(Graphene)就是这种材料。石墨烯是由碳原子构成的二维晶体,一般厚度方向为单原子层或双原子层碳原子排列。Graphene(石墨烯)是其英文名,该命名与graphite(石墨)有关,也有人使用“单层石墨”
石墨烯是一种稳定材料,也是一种禁带宽度几乎为零的半金属/半导体材料。它具有比硅高得多的载流子迁移率(200000cm2/V),在室温下有微米级的平均自由程和很长的相干长度。因此,石墨烯是纳米电路的理想材料,也是验证量子效应的理想材料。然而这种材料也非常难以测量(图3)。石墨稀显微镜是测量该新材料的必要手段。关键问题之一是单个样品和多层样品中石墨稀的层数。TEM和低能电子显微镜(LEEM)是确定层数的重要检测设备,多层切片模拟式确定TEM检测能力和成像条件的有效方式。LEEM可以检测层数及样品的形貌。
二嵌段共聚物(diblock copolymers)是另一种新型材料,它可在光刻图形上排列一致,极有潜力在传统的光刻条件下增大光刻图形密度,并减少线条边缘粗糙度(LER)。对该材料的测量主要是通过x射线散射方法,精确度可到到粗糙度小于0.5nm。因为不同的化学物质有不同的共振态,共振散射加强了不同化学物质之间的对比,以此实现准确测量。
关键字:新材料 测量
编辑:小甘 引用地址:浅谈新材料为测量带来的挑战
推荐阅读最新更新时间:2023-10-12 23:14
基于MSP430F169的多探头辐射测量仪设计
在介绍了整个系统的基础上,对仪器设计中的关键问题进行了详细说明,重点讨论了通过单片机给多个探头供高压电的原理和分别连接多个探头后数据传输的实现方法,并给出了单片机外围电路的原理图。试验证明,该仪器完全可以用于核辐射探测领域,且具有小型化、数字化、低功耗等优点。
1 系统概述
本系统由探头和主机两个部分组成。外接探头内部的探测器类型包括测量α的ZnS探测器、测量β的塑料闪烁体探测器,测量γ的NaI晶体探测器,以及同时测量α,β的双闪烁体探测器和同时测量α,β,γ的双GM管探测器。探头内置一片MSP430F169型单片机,以提高其数字化程度;主机是以单片机MSP430F169为核心检测系统。MSP430F16
[单片机]
影响超声波测厚仪测量精度的六个原因
影响超声波测厚仪测量精度的六个原因
(1) 覆盖层厚度大于25 m时,其误差与覆盖层厚度近似成正比;
(2) 基体金属的电导率对测量有影响,它与基体金属材料成分及热处理方法有关;
(3) 任何一种测厚仪都要求基体金属有一个临界厚度,只有大于这个厚度,测量才不会受基体金属厚度的影响;
(4) 涡流测厚仪对式样测定存在边缘效应,即对靠近式样边缘或内转角处的测量是不可靠的;
(5) 试样的曲率对测量有影响,这种影响将随曲率半径的减小明显地增大;
(6) 基体金属和覆盖层的表面粗糙度影响测量的精度,粗糙度增大,影响增大。
[测试测量]
如何通过测量蓄电池的端电压来判定其技术关况
蓄电池的端电压在正常情况下应为12V(12V车系),但并不是端电压有12V的蓄电池其技术状况就是良好的。当蓄电池的电能储备只有50%了,如果用万用表测量,它的端电压很可能还是12V,像手机电池一样,在“虚电”情况下,电量显示仍然是100%。因此,如果要通过电压值来确定蓄电池的技太状况,则必须采用高率放电计。就是说,在蓄电当通过一个大电流的情况下,让其端电压的变化情况来说明技太状况。高率放电计! (1)使用旧式高率放电计测量畜电池的单格电压,其单格电压值应在1.5V以上,并在5s内保持稳定.若5S内下降到1.7V,说明存电充足;下降到1.6,表明放电量达到25%的额定容量;下降到1.5V,表明放电量已过50%的额定容量;若5S内电压
[测试测量]
温度对测量仪器的致命影响
一台高精度的仪器是由很多种高精度的元器件的高准确性性和高稳定性的模拟电路决定的,而这个电路最大的破坏者就是温度,这里将介绍温度到底对高精度的仪器有哪些影响。 一、温度可以影响元器件的物理特性 1、对二极管伏安特性的影响 在环境温度升高时,二极管的正向特性曲线将左移,反向特性曲线将下移,如图1所示。在室温附近,温度每升高1℃,正向压降减小2~2.5mV;温度每升高10℃,反向电流约增大一倍。可见,二极管的特性对温度很敏感。 图1 二极管的伏安特性 2、对晶体管输入输出特性的影响 由于半导体材料的热敏性,晶体管的参数几乎都与温度有关。 温度对输入特性的影响:与二极管伏安特性类似,当温度升高时,正向偏移
[测试测量]
普通发光二极管(LED)的万用表检测方法
发光二极管(LED)是一种直接注入电流的发光器件,是半导体晶体内部受激电子从高能级回复到低能级时,发射出光子的结果,这就是通常所说的自发发射跃迁.当LED的PN结加上正向偏压,注入的少数载流子和多数载流子(电子和空穴)复合而发光.值得注意的是,对于大量处于高能级的粒子各自分别自发发射一列一列角频率为ν =Eg/h的光波,但各列光波之间没有固定的相位关系,可以有不同的偏振方向,并且每个粒子所发射的光沿所有可能的方向传播,这个过程称为自发发射.其发射波长可用下式来表示:
λ(μm)=1.2396/Eg(eV)
发光二极管(LED)一般由磷砷化镓、磷化镓等材料制成.它的内部存在一个PN结,也具有单向导电性,但发光
[测试测量]
数字化仪/示波器的关键特性介绍 宽带信号测量方案解析
我们生活在一个存在巨大技术断层的时代。新兴的无线通信应用趋向于更宽的带宽、更高的频率、更密集的调制方案、多个信道,以及有更多的数据需要管理。为了测量宽带信号,工程师通常需要使用示波器和数字化仪,这些仪器利用 ADC 技术进行波形采集。在某些情况下,这些仪器可互换使用进行波形分析。然而,尽管存在许多相似之处,示波器和数字化仪终究有些区别,它们分别针对不同的目标应用进行了优化。例如,示波器通常配有大型前面板显示屏和键盘,用于快速呈现随时间变化的波形。某些仪器厂商将示波器当作数字化仪推广,或将数字化仪作为示波器推广,这可能会造成困惑。本文针对数字化仪或示波器的关键特性进行了详细介绍,以供您在选择下一个宽带测量解决方案时参考。 在设计
[测试测量]
业界首款移动设备的自动化电池寿命测量系统
无线网络、设备及服务测试领域的领导者思博伦通信近日发布了一种测量移动设备电池寿命并推动其改进的自动化系统–Quantum。Quantum是业界第一种用户体验分析系统,可在移动设备上自动执行消费者的使用例,并同步执行电力消耗测量任务。
VoLTE、可视通话、流视频、多人游戏等4G应用层出不穷,更大的屏幕、更快的应用处理器和 吞吐量更高的Modem也让移动设备变得更加精彩,但所有这一切都是有代价的。它们会让移动设备的电力消耗直线上升。为此,设备制造商不得不采用容量更大 的电池,而在许多情况下,这又会让设备的尺寸越变越大。然而,随着空间、散热和成本方面的限制,追求更大电池的竞赛已经到达了顶峰,不可能永无止境地玩下 去。因此,移动行业
[测试测量]
ADI公司的低功耗ADC能够在便携性和高性能新的方面支持医学和工业电子设备
——ADI 公司最新 ADC 的封装尺寸和功耗都比同类产品减小 80 %,
能够支持无线病人监护仪以及快速、精确的测试仪器和数据采集设备
美国模拟器件公司( Analog Devices, Inc. ,纽约证券交易所代码 : ADI ),全球领先的数据转换信号处理技术供应商,今日在马萨诸塞州诺伍德市( NORWOOD, Mass. )发布使用其最新的精密 PulSAR 模数转换器( ADC )大幅度降低了医学和工业电子设备的功耗。 ADI 公司的 AD7980 1 MSPS (每秒百万次采样)、 16 bit ADC 的功耗和封装尺寸比同类产品中最具有竞争力的 16 bit ADC
[新品]