量子计算像1968年的半导体一样进入2018年

最新更新时间:2018-03-12来源: TIRIAS Research关键字:量子计算 手机看文章 扫描二维码
随时随地手机看文章

量子计算的竞争格局在2018年初持续升温。但是今天的量子计算格局看起来很像50年前的半导体格局。


硅基集成电路(IC)于1968年进入其“中等规模”集成阶段。短短几年内,晶体管的计数从一个芯片上的十个晶体管到一个芯片上的数百个晶体管。过了一段时间,芯片上有成千上万的晶体管,然后是成千上万的晶体管,现在我们已经有五十年了,已经有数百亿。


量子计算是量子物理学的一个实际应用,它使用单个的亚原子粒子作为计算元素来冷却毫米温度。这些亚原子计算元件被称为“量子位”.Qubits可以使用CMOS技术制造,如标准IC。但是,在量子计算机的严酷寒冷的操作环境中操纵和协调越来越多的量子位所需的互连,控制和传感器电路需要新的科学和技术发展。


量子计算正在享受其两位数的量子时代。在2017年,我们看到了一个具有20个通用物理量子位的芯片,并且在2018年我认为我们将看到具有超过50个通用量子位的芯片。但是第一个大众市场通用量子计算机将从数千个逻辑量子位构建而成。逻辑量子位是容错的,具有错误检测并最终纠错。数以千计的逻辑量子位至少转换成数以万计的物理量子位,这取决于物理量子位构架的数量级可能更大。


事实上,从数十到数百个物理量子位的演变可能需要一段时间; 从数百到数千将需要更长的时间。专家们认为,具有数千个逻辑量子位的可商业部署的量子计算机还需要十多年的发展,并有可能超过二十年。“量子霸权”将不会长久。同时,许多供应商正在取得令人瞩目的进展


这是2018年初量子计算的记分卡。它处于快速扩张阶段,但当数量很小时,快速增长很容易。


量子系统下


IBM和Rigetti都推出了基于云计算的通用型量子计算机,用于公共访问和有限访问(分别为20和19位系统),每个系统都有一个完整的软件开发工具包(devkit)。NTT推出了基于云的量子点和基于光子学的架构及其全堆栈开发套件。微软和谷歌推出了他们的通用量子计算研发计划以及全堆栈devkits和模拟器,但尚未公开演示硬件。英特尔正在展示原型芯片,但尚未展示它们。IonQ,Quantum Circuits和RIKEN正在投资硬件开发,但尚未展示其工作。然而,只有两家公司正在销售用于客户使用的专用系统,该系统可以被称为量子计算机:


D-Wave和NTT实现了2,048个物理量子比特,尽管他们使用完全不同的技术来完成这个任务,而他们的系统并没有显示出完整的通用量子计算功能。他们的架构适合于解决优化,分子动力学甚至深度学习训练和推理任务中的一些问题。


量子铁的模拟


模拟数十个物理量子位需要大量“经典”计算能力,这意味着当今最先进的基于IC的计算,存储器,存储和网络体系结构。这些软件仿真可能比他们模拟的量子计算机运行速度慢几个数量级,研究人员是否可以真正构建与当前仿真一样大的真实系统。


上周,来自Jülich超级计算中心,武汉大学和格罗宁根大学的欧洲研究人员成功模拟了一台46-qubit通用量子计算机。这种模拟打破了美国能源部劳伦斯伯克利国家实验室4月份发布的45-quibit记录。今年7月,来自哈佛 - 麻省理工学院超冷原子中心的美国团队和加州理工学院模拟了一个51-qubit量子计算机,但它是为了解决一个特定的方程而建立的,并不是一个通用的模拟。去年11月,马里兰大学和美国国家标准与技术研究院(NIST)的一个小组发表了一篇关于53-qubit模拟器的论文,该论文也是为了解决一个具体问题。


同时,在云中,IBM在经典的超级计算机上内部模拟了一个56-qubit通用系统。然而,公众可以获得16-qubit系统,看起来IBM似乎并不重视新Q网络程序之外的最终用户模拟。微软新推出的量子开发套件支持在其Azure云中模拟“超过40个量子位”,其本地基于PC的模拟可以在16 GB内存中扩展至大约30个量子位。我不得不怀疑微软的Azure量子计算模拟是否与它最近与Cray的合作有关。Rigetti的基于云的Forrest模拟器可以模拟多达36个量子位。Google的Quantum Playground可以模拟多达22个量子位。


通用芯片


IBM在2017年末推出了20-qubit芯片,这是IBM Q网络宣布的基石(请阅读下面的Q网络公告)。IBM表示它已经构建并在内部测试了一个50-qubit芯片。IBM Q网络参与者可以访问新的20-qubit系统,并且随着其进展,将可以及早访问50-qubit芯片。英特尔在10月份向其合作伙伴QuTech交付了17-qubit测试芯片,并在2018年初在消费电子展(CES)上展示了49-qubit芯片。Rigetti本周宣布,其19位芯片可用于云访问(访问需要Rigetti的批准)。Rigetti的芯片是一个20-qubit架构,其中一个量子位具有制造缺陷; 它落后于IBM。谷歌已经在内部测试了六个,九个和二十个qubit芯片,



Rigetti 20-qubit芯片(左),Google 6-qubit芯片加载体(中),英特尔49-qubit载体(右)(来源:各厂商)


Atos表示其40-qubit模拟器基于英特尔至强处理器,但专用硬件加速器“即将推出”。这并不奇怪,因为IBM正在内部使用其Power Systems在开发过程中模拟量子计算机。

量子软件开发


在软件方面,由于这些研究人员过去几十年来一直在开放其内部量子计算开发环境,因此开放源代码的关键部分是强制性的,以吸引学术研究人员参与特定架构。


今年,IBM开源QASM(Quantum ASseMbler),这是IBM QISKit(量子信息软件包)的关键组件。XACC(极限称重ACCelerator)与Rigetti的模拟器和原型芯片以及D-Wave的生产系统相连接。QuTiP(Quantum Toolbox in Python)是量子计算硬件社区广泛使用的开源量子计算模拟器(阿里巴巴,亚马逊,谷歌,霍尼韦尔,IBM,英特尔,微软,诺斯鲁普格鲁曼,Rigetti和RIKEN的标志出现在其网站上)。据推测,QuTiP正被用来模拟正在开发的硬件架构。谷歌与Rigetti合作开源OpenFermion,这是一个编译和分析量子化学问题的软件包。微软推出了Q#(“Q-sharp”)量子计算语言(请阅读下面有关微软的更多信息)。

关于中国呢?


中国公司由于缺少量子计算机出版物和公告而引人注目。今年中国宣布了价值100亿美元的量子信息科学国家实验室,计划于2020年开放。阿里巴巴,百度和腾讯都在AI和深度学习方面投入了大量资金,所以我期望能够听到更多关于他们对量子的兴趣计算明年。

最近的大公告


微软宣布量子开发套件


微软在2000年开始从事量子计算工作,直到2000年。在9月份的Ignite活动中,微软宣布将其量子计算计划基于2012年发现的Majorana Fermions。如果微软能够利用Majorana Fermions,量子比特可能比其他量子比特更经济,只有10个物理量子比特到一个逻辑量子比特,而不是数千或更多。


但是,在它的大型Majorana Fermion推出之后,微软一直对其硬件进展保持沉默。相反,微软专注于量子模拟其新的Q#语言,并将其紧密集成到其Visual Studio集成开发环境(IDE)和量子计算机模拟工具中,其中包括用于分析资源利用率的追踪模拟器,以及大量库,代码示例,和全面的文件。


微软的量子模拟器使用英特尔的AVX扩展,自2011年的“Sandy Bridge”处理器世代以来,英特尔处理器支持该扩展。微软今年也宣布了它的项目“脑波”基于FPGA的AI加速器,并暗示它正在Brainwave上运行“量子启发优化”。我的猜测是,微软正在优化Brainwave的FPGA深度神经网络(DNN)逻辑,以提高深度学习模型的准确性和/或速度。


微软的声明很重要,因为使用Visual Studio IDE的企业软件开发人员众多。这是一个成熟,高效的工具包。将量子计算集成到Visual Studio中可能会吸引新一代学术研究人员远离开源IDE,就像Nvidia通过其CUDA应用程序编程接口(API)和工具包对GPU编程所做的一样。


IBM宣布Q网络


IBM已经推出了QISKit API和devkit,供开发人员访问IBM基于云的Quantum Experience和本地模拟器。去年12月,IBM推出了Q网络生态系统开发计划。IBM并未谈论成员级别,但成员资格似乎基于支付能力和对IBM量子生态系统潜在贡献的可能性进行扩展。


访问IBM的量子计算资源非常简单; 一般访问将始终是Q Network参与者访问硬件和访问最新开发资源所需的一两代时间。有三种类型的会员,公布的参与者是:


集散地(教育,研究,开发和商业化区域中心):庆应义塾大学,墨尔本大学,橡树岭国家实验室(ORNL),牛津大学和IBM研究院


合作伙伴(特定行业或学术领域的先驱):戴姆勒,摩根大通公司,JSR和三星

成员(制定量子准备战略):巴克莱,本田,Materials Magic(日立金属集团)和长濑

IBM Q网络和更大的IBM Q体验用户群中的目标用户是研究生,学术研究人员和商业研究人员。量子计算仍处于实验阶段,无论是提供基础设施还是理解如何编程量子计算机来解决有用的问题。量子计算今天被发现和启发式统治。


IBM表示,其Q经验工具被超过1500所大学,300所私立教育机构和300所高中用作物理课程的一部分。这也是Nvidia用CUDA工具进行教育推广的成功策略。IBM宣称有35个第三方研究刊物使用Q体验工具,这个数字令人印象深刻,突显了量子计算早期阶段正在进行的研究人员关注的激烈竞争。


从哪里来?


量子计算的商业化还有很长的路要走。沿途会有一些暂时的优势。但随着投入量子计算研发的大量投入,任何一个量子计算竞争者的短期量子优势都将短暂流逝,如果没有持续的长期研发和商业化战略的话。


如果我们在2018年看不到具有50个或更多通用量子比特的系统,我们将会感到惊讶。我们认为我们还会看到一些已经具有超过2000个物理量子比特的更专业系统在受限问题域内显示出显着的量子优势。我们计划在3月份参加量子通信,测量和计算国际会议(QCMC),以便在量子计算的研究方面保持最新状态。

关键字:量子计算 编辑:王磊 引用地址:量子计算像1968年的半导体一样进入2018年

上一篇:瞄准AI商机,晶心从汽车电子切入进攻64位CPU IP
下一篇:2018年全球企业市值100强:苹果登顶,6家半导体企业入选

推荐阅读最新更新时间:2023-10-13 10:25

当人工智能遭遇量子计算,将是一次知识大爆炸?
人工智能 的发展可能存在三个阶段:服务器时代、云计算时代、 量子计算 时代。   现阶段人工智能基本只能依靠集中处理的方式实现相关功能和应用,也就是通过云计算的方式。根据我们的判断,量子计算有望给人工智能带来的变革性变化在于小型化和移动化。当量子芯片中的量子比特数量达到一定数量后,计算能力将满足人工智能对运算能力的需求,人工智能将不再依赖于大型服务器集群。未来量子芯片小型化后,人工智能前端系统的快速实时处理便成为可能,比如车载智能系统、无人机智能系统等。   全球数据总量发展趋势(EB)       量子计算发展历史     2017年5 月3 日,中科院宣布首台光量子计算机在我国诞生,标志着我国量子计算已处于世界领先水平。人
[嵌入式]
IBM量子计算机取得重大突破 可进行百万项计算
    IBM的3D超导量子比特装置,一个量子比特(长度大约在1毫米左右)悬浮在小型蓝宝石芯片的空腔中央。这个空腔由装置的两半闭合后形成,测量通过向连接器传递微波信号进行。空腔的宽度大约在1.5英寸(约合3.81 厘米)左右。对于单个量子比特演示来说,这个装置的尺寸似乎有点大。研究小组表示这一系统可以按比例放大,容纳数百或者数千个量子比特     一个硅芯片,容纳3个量子比特。这个芯片倒装在印刷线路板上,通过丝焊(8×4毫米)连接I/O同轴电缆。更大规模的量子比特和振荡电路集成可用于打造具有可升级性的系统   北京时间3月1日消息,据美国物理学家组织网报道,IBM研究院的科学家在提高量子计算装置
[安防电子]
NVIDIA cuQuantum SDK 创造量子计算模拟世界纪录
NVIDIA cuQuantum SDK 创造量子计算模拟世界纪录 NVIDIA cuQuantum发威,在量子计算领域占据C位。 在新兴的量子计算领域,NVIDIA刚刚打破了一项具有重大影响的纪录,同时正在推出相关软件,以便任何人都可以完成这项工作。 量子计算将推进气候研究、药物研发、金融等领域的新一波前进浪潮。通过在当今的经典系统上模拟未来的量子计算机,研究人员可以更快、更大规模地开发和测试量子算法。 朝着这个未来,NVIDIA创造了有史以来最大的量子算法模拟,使用cuQuantum来解决MaxCut问题,cuQuantum是NVIDIA用于加速GPU上的量子电路模拟的SDK。 在数学领域中,经常列举
[嵌入式]
NVIDIA cuQuantum SDK 创造<font color='red'>量子</font><font color='red'>计算</font>模拟世界纪录
区块链威胁从何而来 会被量子计算攻破吗?
  颠覆性、划时代、革命性…… 量子计算 光环太多,又有不近人情的“高冷”。另一边,开年以来,区块链火得一塌糊涂。网上热传的“3点钟不眠区块链社群”,神秘而火爆。下面就随嵌入式小编一起来了解一下相关内容吧。   最近,它俩不期而遇了。据外媒报道,一台具有4000个以上量子比特的 量子计算 机就能瓦解区块链。若有人能做出这样的 量子计算 机,就能解出并验证每笔交易,未来产生的所有加密货币都会被其垄断,加密货币的信任系统也将被瓦解。   这听起来很可怕。俩“神仙”似乎要打架,是真有此事还是杞人忧天?    “攻链”威胁从何而来   在量子计算威胁区块链的相关论述中,持有此观点的一方给出的论据主要包括两点:一是量子计算会威胁比特币的
[嵌入式]
谷歌/微软将宣布量子计算里程碑 实际应用仍有差距
  据《金融时报》北京时间1月29日报道, 量子计算 的热度即将迎来大幅升温。35年来,这一潜在革命性技术一直是物理学家和计算机科学家的一个梦想。下面就随网络通信小编一起来了解一下相关内容吧。   作为全球两大科技巨头,Google和 微软 预计将在接下来几周内宣布两大科学里程碑,凸显人类在 量子计算 领域取得的快速进步。   但是,他们是否能够在短期内把最新技术进步用于有用的商业应用中又是另外一回事。    量子计算 领域的一些领先企业表示,量子计算机将在未来5年内被用于重要实际应用中,远远早于此前预期。量子计算机利用量子力学来大幅提高运算速度。   “我们有机会解决一系列此前无法解决的问题,” 微软 量子团队主管托德·霍尔姆
[网络通信]
光学量子计算机芯片首次执行数学运算
英国布里斯托尔大学的研究人员们ijnri制作了一颗光学量子计算机芯片的样品,而且第一次执行了数学运算,向实用性量子计算机又迈出了重要的一步。    这个光学量子计算芯片非常小,之上搭载了更加迷你的二氧化硅波导。研究人员们就用它执行了数学家Peter Shor在1994年发明的Shor量子算法,具体任务是寻找15的质因数,结果成功输出了3和5。    分解质因素看起来没什么技术含量,但其实是现代加密算法中的关键部分,而量子加密普遍被视为不可破解。    具体计算过程简述如下:四个光子通过波导传输,并构造一个H栅极,然后每个量子位(qubit)都以0和1混合态准备就绪(传统位要么0要么 1),整体形成全部四位输
[半导体设计/制造]
IBM再次超越谷歌:研制出50量子计算机原型机
  在量子计算机领域里,谷歌一直被视为“领头羊”。此前,谷歌已制造出9量子比特的机器,并计划今年增加至49量子比特,实现“量子霸权”(quantum supremacy)。但现在, IBM 率先完成了这项成就。下面就随网络通信小编一起来了解一下相关内容吧。   IBM再次超越谷歌:研制出50量子位计算机原型机     IBM 研制出50量子比特原型机   当地时间11月10日,在美国电气和电子工程师协会(IEEE)的工业峰会上, IBM 对外宣布,公司已经成功研发20位量子比特的量子计算机,可在年底向付费客户开放。更值得一提的是,IBM还成功开发出了一台50位量子比特的原型机,可为今后IBM Q系统奠定基础。   IB
[网络通信]
全球首款商用量子计算控制系统发布
瑞士苏黎世仪器 Zurich Instruments 量子科研仪器 今年11月,瑞士苏黎世仪器 Zurich Instruments发布了两款新产品,分别是 UHFQA Quantum Analyzer 超高频量子分析仪和 PQSC Programmable Quantum System Controller 可编程量子系统控制器。与已有的 HDAWG Arbitrary Waveform Generators 多通任意波形发生器和 LabOne® 仪器控制软件一起,他们构成了世界首款Quantum Computing Control System (QCCS) 量子计算控制系统。瑞士苏黎世仪器 Zurich Instru
[测试测量]
全球首款商用<font color='red'>量子</font><font color='red'>计算</font>控制系统发布
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved