使嵌入式 STT MRAM 磁隧道结阵列的加工成为可能

最新更新时间:2018-05-23来源: 互联网关键字:磁隧道结阵列  嵌入式  STT 手机看文章 扫描二维码
随时随地手机看文章

半导体产业正在迎来下一代存储器技术的新纪元,几大主要变化趋势正在成形。这其中包括磁性随机存储器  (MRAM) 的出现。我将在几篇相关文章中介绍推动MRAM 得以采用的背景,重点说明初始阶段面临的一些挑战,并探讨实现 STT MRAM 商业可行性的进展。

 

应用材料公司为实现 STT MRAM 的制造提供了多项重要创新,包括基于Endura® 平台上的PVD创新以及特别的蚀刻技术。利用这些新技术并借助梅丹技术中心的设施来加工并测试器件阵列,我们验证了 STT MRAM 的性能和可扩展性。

 

如今,除了逻辑元件和其他专用电路元件外,典型的微控制器 (MCU) 包括用作工作存储器的 SRAM 和用作储存存储器的闪存。当前业界遇到的闪存问题是,要将浮栅 (FG) 的制造工艺对逻辑门性能的影响降到最低(图 1)。为此,制造商通常会使用多达 10 个的额外掩膜层,这必然会增加其复杂性和成本。在 <28nm 的节点, 逻辑部分的工艺将迁移到高 k 栅介质/金属栅极(HKMG),由于 HKMG 的热预算有限,将导致工艺集成更为复杂。

                                              image.png

图 1:带闪存(左)和 STT MRAM(右)的 MCU 集成方案

 

另一方面,在后端工艺 (BEOL) 中集成自旋转移矩 MRAM (STT MRAM) 较为容易,只需要3个额外的掩膜(图 1)。此外,与 STT MRAM 相比,闪存的能耗较大。STT MRAM 具有前景的特性(快速、非易失性、低功耗和在低温下易于实现 BEOL 集成)使大多数主要逻辑和存储器厂商开始逐步开发 STT MRAM 技术。除 MCU 外,由于 STT MRAM 可以实现相比于 SRAM 更高的密度,STT MRAM也正在被开发用于取代 SRAM,用作 <10nm 节点的最后级缓存。

 

STT MRAM 的每个存储单元都由磁隧道结 (MTJ) 组成,其最基本的形式是由夹在两个磁性薄膜(约 10-30Å 厚的 CoFeB)间的薄介质隧穿势垒膜(约 10Å 厚的 MgO)组成。在 MTJ 堆叠中实际有许多额外的薄膜层(参见示例中的图 2a),并且自 2007 年以来已作为硬盘驱动器 (HDD) 中的读取传感器进行制造。

 

 

image.png

图 2:(a) pMTJ 堆叠细节、(b) 和 (c) 所示为 pMTJ 阵列的横截面图和俯视图

 

但是,针对 HDD 中单独的 MTJ 器件与 STT MRAM 中垂直 MTJ (pMTJ) 器件阵列的要求是完全不同的。关于pMTJ 薄膜堆叠层沉积和蚀刻工艺设备的创新对于制造密度/性能有竞争力的 STT MRAM 至关重要。此外,即将生产 STT MRAM 的存储器制造厂晶圆初始的产量比 HDD 磁头制造厂高 10-20 倍,因此在设计设备时,设备的正常运行时间是要考虑的关键因素。

 

应用材料公司已在公司的 Endura 平台上针对 pMTJ 堆叠层沉积(具有可控微观结构、清洁界面和sub-Å 精度的多层薄膜)开发出多阴极 PVD 室以及各类原位热处理室。此外,还针对蚀刻 pMTJ 阵列开发了用于密集阵列中非易失性磁性材料的特别蚀刻技术。[1]

 

为了评估 pMTJ 沉积和蚀刻设备的性能,在梅丹技术中心设计并制造了 1R pMTJ 阵列测试芯片。最小存储单元尺寸 130nm x 130nm(图 2)等同于 28nm 节点处的 22F2,相当于约 1Gb 密度。这些测试芯片已在高通公司进行过电性分析,结果也在2015和2016的国际电子元件会议(IEDM)中共同发表。[2, 3]下列段落中讨论的这些结果,着重关注使用 Endura PVD 系统和特别蚀刻技术制造的 pMTJ 阵列性能。

 

一个关键的性能指标是蚀刻后 MTJ 阵列的 TMR%(隧道磁电阻)。对于间距为 130nm 和 50nm 直径的 pMTJ 阵列,平均 TMR 约为 150%(图 3)。电阻(RP)的西格玛/平均值  <8%。这两个数值都表明蚀刻过程中的蚀刻损伤极小。通过优化 pMTJ 堆叠层中的自由层 (FL) 材料,在阵列中可获得低至约 90uA 的P-AP 翻转电流(35ns 翻转脉冲)(图 4)。

 

 

image.png

图 3:采用不同阵列间距和 CD 的 TMR 百分比图

 

image.png

图 4:通过自由层 (FL) 优化来降低翻转电流

 

最后,通过优化 MgO 沉积室的设备硬件设计,如图 5 所示,可使约 10Å MgO 隧道势垒层的击穿电压从约 1.2V(标准)显著提高到约 1.5V(改进后)。如我们的工作中所演示,这对于提高耐用性至 >1015 个写入周期至关重要。[3]我将在下一篇博客中进一步探讨这个问题。

 

image.png

图 5:通过工艺和设备硬件优化实现 MgO VBD 改进


  1. Lin et al., IEEE Trans of Magnetics, vol. 51 2015      p4401503

  2. Park et al., 26.2, IEDM 2015

  3. Kan et al., 27.4, IEDM 2016

 

1.    Lin 等,IEEE Trans of Magnetics,vol. 51 2015 p4401503

2.    Park 等,26.2,IEDM 2015

3.    Kan 等,27.4,IEDM 2016

 

 

image.png

Mahendra Pakala

Mahendra Pakala 负责 STT MRAM 的开发工作,包括磁隧道结堆叠层和 MTJ 阵列制造工艺的技术路线图。他拥有辛辛那提大学材料科学专业的博士学位,并已获得 30 多项专利。


关键字:磁隧道结阵列  嵌入式  STT 编辑:muyan 引用地址:使嵌入式 STT MRAM 磁隧道结阵列的加工成为可能

上一篇:莱迪思拓展其模块化视频接口平台(VIP)
下一篇:美高森美扩大碳化硅产品组合提供下一代肖特基二极管器件

推荐阅读最新更新时间:2023-10-13 10:34

赛普拉斯推出West BridgeTM嵌入式系统架构,可实现多种嵌入式系统的快速数据传送
新型外设控制器系列可与快速变迁的接口标准相衔接 2006年12月7日 北京讯 赛普拉斯半导体公司(NYSE:CY)于日前推出一种面向专用外设控制器的新型架构,使这些专用外设控制器得以与快速发展的接口标准相衔接,并提供了面向众多嵌入式应用的高性能、优化数据通路。Cypress还宣布推出首个基于该新型架构的产品,即:一款专为优化多媒体手机中的数据吞吐量而设计的外设控制器West Bridge Antioch。 新型West BridgeTM外设控制器系列中的器件起到了嵌入式中央处理单元(CPU)的“伴随芯片”的作用,以把CPU从数据密集型运算中解放出来。就像在PC架构中引入North Bridge和South Bridge
[新品]
嵌入式Silverlight为何能异军突起
既然眼球决定商机,那么首先我们看看下面几张产品照片,这些很炫的UI是怎样开发的呢,这些产品是什么操作系统呢?Android ? 图1 多彩UI设计 不知道你心里的答案是什么,是Android也好,其他的系统也罢,不知你是否想到了WinCE系统?Android 使用XML 语言来划分这应用程序开发者和UI设计者的界限。这种思想在QT 和WinCE 上也得到了快速的借鉴和推广。 Windows Embedded高级产品经理David Wurster曾表示,微软丰富的工具提供差异化的用户体验。UI方面,面向Windows Embedded的SilverLight技术能够发挥非常大的作用,基于SilverLight的UI框架恰恰能够帮
[电源管理]
<font color='red'>嵌入式</font>Silverlight为何能异军突起
研华掌上型嵌入式工控机,让机器看得更远更清楚
为了提高检查过程的效率和准确度,机器视觉在工业自动化和运输领域的应用日益普遍。机器视觉可以理解和解释检查过程中获得的图像。机器视觉市场预计将在2020年有107亿美元的市场规模,截至2025年将达到147亿美元。 研华EPC-C301嵌入式工控机搭载Intel®第八代 Core™ i7 - 8665UE/i5-8365UE低功耗CPU,可为摄像头、门控、读卡器、键盘和收据打印机等外围设备提供丰富的I/O接口。EPC-C301不仅拥有多达4LAN及4种扩展方式,它还具有170 x 118 x 70毫米(6.69 x 4.64 x 2.75英寸)的超紧凑外形,支持-20至60°C(-4〜140°F)的工作温度范围,轻松实现多样化解决方
[嵌入式]
研华掌上型<font color='red'>嵌入式</font>工控机,让机器看得更远更清楚
ARM嵌入式系统的软件开发方法
  ARM嵌入式系统在硬件选型和PCB硬件平台设计完成之后,就可以根据硬件和应用的需求,开始软件系统的功能和结构设计了。一般而言,嵌入式系统的软件可以采用两种,一种是缺少操作系统的嵌入式控制系统软件,另一种是在具备嵌入式操作系统情况下的嵌入式软件。   例如,有些系统的ARM芯片上运行Linux等操作系统;而另外一些ARM芯片上使用的却是不带操作系统的软件,如使用ADS开发的ARM Evaluator,其程序的运行通过板载程序配合下载程序实现。不过嵌入式操作系统在嵌入式系统中的作用日显重要,它可以为嵌入式系统开发人员提供一个基本的软件开发和运行的支撑平台,从而大大减小复杂嵌入式系统的开发难度和开发周期,增强系统的稳定性,降低开
[单片机]
ARM<font color='red'>嵌入式</font>系统的软件开发方法
基于嵌入式无线CPU短信通信终端系统的设计
  1. 引言   当前单片机和PC 机通过串行接口构成的多微机系统已经广泛应用于工业控制、环境监测等场合,这些系统大多采用RS - 232、RS - 485 或是有线modem的通信方式, 虽然很经济适用, 但是有线数据传输方式很大程度上限制了其使用的场合, 使得架设通信线路比较困难的地区无法应用。针对这种情况, 本文利用支持语音、短消息SMS ( ShortM es.sage Service)、数据通信、传真等业务的嵌入式无线CPU, 结合已有的单片机系统通过RS- 232接口连接嵌入式无线CPU, 从而利用GSM网络实现数据的无线传输。嵌入式无线CPU 在短信息方面的应用具有永远在线、不需拨号、价格便宜、覆盖范围广等特点
[嵌入式]
基于ARM9嵌入式平台的多标签多协议RFID读写器设计
1 RFID系统结构原理 无线射频识别技术是一种非接触的自动识别技术,常称为感应式电子晶片或近接卡、感应卡、非接触卡、电子标签、电子条码等。完整的RFID阅读系统是由读写器(Reacler)、应答器(Transponder)、天线(Antenna)三部分组成。其动作原理为Reader通过Antenna发射特定频率的无线电波能量给Transponder,用以驱动Transponder电路将内部ID Code送出,此时ReaGler便接收此IDCode。由于此ID Code的唯一性,所以RFID读写器可以实现对物体或商品的自动识别。RFID系统框图如图1所示。系统由中间件、读写器、应答器等部分组成。 射频识别系统的基本工
[单片机]
基于ARM9<font color='red'>嵌入式</font>平台的多标签多协议RFID读写器设计
基于USB接口并以SOPC方式实现的M8051嵌入式调试器设计
引言 在嵌入式系统开发过程中,上位机通过调试器完成对目标机软件的开发、下载、调试。早期的调试器与上位机之间通过串口或并口通信,存在速度慢、通用性差等缺陷。相比之下,USB接口优势明显,具备速度快、易插拔、支持多个调试器同时工作等优势。但目前的USB接口调试器一般采用USB芯片和可编程器件结合的实现方式,成本和复杂度较高。 M8051是Mentor公司的嵌入式8051处理器,凭借良好的性能和功耗控制,占据了大量的SoC(System on a Chip )市场。该处理器集成了OCI(On-Chip Instrumentation,片上调试单元)来完成程序的调试。FS2公司设计的System Navigator是一款针对M
[单片机]
基于USB接口并以SOPC方式实现的M8051<font color='red'>嵌入式</font>调试器设计
基于89C51RD2单片机和嵌入式内核实现智能型肠营养输液泵的设计
随着各种电子系统在各个领域中应用的不断深入,对电子系统本身的要求也越来越高,尤其对于控制系统软件设计的可靠性、实时响应等各个方面的性能有了更严格的要求。单片机的程序设计不再是前后台的运行模式,而是采用多任务实时操作系统的设计思想。由于使用嵌入式操作系统,可以将具体应用分解成多个任务,简化了应用系统软件的设计,使控制系统的实时性得到保证,使其达到理想状态。良好的多任务设计,还有助于提高系统的稳定性和可靠性。 目前,国内应用最多的是以51系列单片机为主的8位单片机。在51系列单片机系统中,可以进行移植的嵌入式操作系统为数不多。其中,Keil自带的RTX51没有源代码,使用起来很不方便;uC/OSII虽然有源代码,也有移植成的例子,
[单片机]
基于89C51RD2单片机和<font color='red'>嵌入式</font>内核实现智能型肠营养输液泵的设计
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved