基于模式的SoC设计方法研究

最新更新时间:2007-08-17来源: 电子设计信息网关键字:对象  SystemC  总线 手机看文章 扫描二维码
随时随地手机看文章
引 言

SoC(system on chip) 是微电子技术发展的一个新的里程碑,SoC不再是一种功能单一的单元电路,而是将信号采集、处理和输出等完整的系统集成在一起,成为一个有专用目的的电子系统单片。其设计思想也有别于IC,在一个或若干个单片上完成整个系统的功能。

SoC开发和设计存在一些问题,如描述语言不统一、抽象层次低、仿真速度慢、可重用性差、设计性能无法保障、RTL级发现的问题需要重新进行整个的设计流程才能解决,因此SoC的建模与设计的方法成为当前刻不容缓的课题。上述种种问题与曾经困惑软件业的“软件危机”的表现非常类似,为了解决软件危机,人们提出了软件工程。因此,本文的思路是将软件工程中应用最为广泛的面向对象技术引入到SoC设计当中。

设计模式是面向对象的精髓,在软件中已经得到了广泛的运用,在SoC设计中使用设计模式,可以降低软硬件开发之间的鸿沟,对于软硬件协同设计有很大的帮助,使系统得到更大的可伸缩性。

SoC设计方法学

传统的设计方法

在传统SoC设计过程中,系统一开始就被划分为软件和硬件2大部分,软件和硬件独立进行开发设计这样隐含一些问题,如软硬件之间的交互受到很大限制、软硬件之间的相互性能影响造成很难评估和系统集成相对滞后,导致设计质量差、设计修改难和研制周期不能有效保障。

传统SoC设计流程中,EDA设计方法只作用于SoC后级,缺乏SoC前级设计方法与系统验证策略,从而导致了RTL电路模型中错误成分复杂化与验证人工开销激增. 另外,软件开发者必须等到硬件的设计和结构都完成并通过验证之后,才能开始软件的设计和实现,所以开发的周期将会持续很长,产品的竞争力会因此而下降.

基于模式的设计方法

针对传统设计方法的不足,新的SoC设计方法应该在行为级就开始建立仿真模型和进行行为与结构的验证,同时必须强调结构化、封装和重用硬件设计在高层次的抽象的重要性。

因此,本文提出基于模式的SoC设计方法PBSOC ,如图1所示,强调高层次的系统建模,更有利于设计的复用. 在需求分析阶段,根据规格说明,使用面向对象的分析方法,给出用例的关系和顺序图. 在系统级设计阶段,使用统一的语言SystemC进行软硬件协同设计。SystemC是由Open SystemC Initiative (OSCI) 提出和维护的开放源代码的基于C++统一软硬件建模平台. 软硬件模块都用C++ 描述,对不同软硬件划分方案的评估和权衡可以方便地进行。

PBSOC使用形式化方法和面向对象的Petri网对系统的行为和结构建模,不涉及任何结构和时间的细节,并通过实时UML进行可视化的描述. 它不仅具备传统面向对象方法所具有的风格,而且具有Petri网直观模拟系统动态行为的优点,从而能够更加简洁、清楚地描述系统的静态结构和组成元素之间的层次关系。将Petri网思想引入面向对象建模当中,可将系统看作是一些相互作用的对象组成的集合。集合中的每个对象都具有自己的属性和任务,它们根据收到的消息、句柄等来完成相应的任务,从而实现系统的整体功能.在系统级建立面向对象的设计模式库和IP复用库,OO库即面向对象数据库,主要存放的是各种SoC设计模式(pattern) ,在SoC系统框架设计、IP设计以及IP通信设计中都可以使用模式。IP库中存放的可以是普通的IP核,即其他厂商设计的成熟的IP;也可以是用面向对象的方法设计的一些IP 核,即IP 的设计过程也遵从于PBSOC。

图1  PBSOC 设计框架

SOC设计的设计模式

设计模式

模式是解决某一类问题的方法论,它把解决某类问题的方法总结归纳到理论高度。虽然模式起源于建筑,但其思想也同样适用于面向对象设计模式。指导模式设计有3个重要概念,即重用( reuse) 、接口与实现分离和低耦合(loose couple)。重用是系统的设计目标,主要通过继承(inheritance) 和对象复合(composition) 实现. 接口与实现分离指接口保持不变,用分离带来灵活性,主要表现形式为多态性(polymorphism)。低耦合可以降低复杂性。

现存的硬件设计模式和重用方法主要是处理RTL(寄存器传输级) 设计和编码的。这种在设计过程中积累的经验在设计重用时是非常重要和有用的,然而并没有涉及系统级设计的问题。因此在系统级应用面向对象的方法可以克服这些鸿沟,使用设计模式还可以更快速和直观地捕捉设计的内容,提高设计的可理解性,将抽象的级别上升到系统级,能够处理更复杂的硬件设计。

SoC设计模式

SoC的设计模式与软件的设计模式的不同,主要在于软件和硬件的设计差别。SoC的设计不仅包括软件,还有硬件以及软硬件的协同设计,因此,它涉及物理约束、实时性和并发等关键问题。所以要将软件的模式进行改造,并使用软硬件通用的描述语言进行描述。

软件设计模式中运用得比较多的面向对象方法是继承,它同样适用于SoC的设计模式当中,但必须考虑SoC系统中的物理约束。一些软件设计模式,主要是创建型模式,能够动态地生成系统的对象,而SoC系统中硬件部分结构是静态的,因此,它们不适合于SoC硬件部分设计模式,但是对于SoC系统中的软件模块还是可以适用的,例如原型模式和命令模式等。

大部分的结构型模式只需要稍做修改就可以应用到SoC设计中,主要是实现方式的问题,即用软硬件通用的语言来重新描述它。而行为型的模式,需要加入实时系统中一些约束。对于典型软件模式改造的前提和目标是设计的可重用性,主要是SoC系统级设计的可重用。在SoC中FSM(有限状态机) 是最常用的一种行为表达方式,因此状态转换的频率是非常多的.如下面的状态模式,通过改造,可以用于描述硬件设计。

新的SoC设计模式的提出是PBSOC 最终的目标。它主要针对的就是高层次SoC设计中最常用的一些设计方法,以及构筑SoC系统的基本组件和基本结构 ,如层适配模式(layeradapter pattern) 和包装器模式(wrapper)。本文仅给出了模式的结构,具体的实现不在此赘述。

(1) 状态模式(state pattern)

状态模式的意图是使一个对象在内部状态改变时可以改变自己的行为,从客户看来,好像对象改变了它的类。即不同的状态,不同的行为;或者说,每个状态有着相应的行为.考虑SoC片上总线协议, 片上总线总是有3 个状态: 闲( IDL E) 、忙(BUSY) 和关闭(CLOSE) . 而各个状态的处理过程不一样. 如图2 所示,BusProtocol 类维护一个表示总线当前状态的状态对象(一个BusState 子类的实例) . BusProtocol 类将所有与状态相关的请求委托给这个状态对象. BusProtocol 使用它的BusState 子类实例来执行特定于连接状态的操作. 一旦总线状态改变, BusProtocol 对象就会改变它所使用的状态对象. 例如,当片上总线从闲置状态转为忙状态时,BusProtocol 会用一个BusBusy 的实例来代替原来的BusIdle 的实例。

图2  状态模式的系统结构

State 模式不指定哪一个参与者定义状态转换准则. 如果该准则是固定的, 那么它们可在Context 中完全实现. 然而若让State 子类自身指定它们的后继状态以及何时进行转换, 通常更灵活、更合适. 这需要Context 增加一个接口, 让State 对象显式地设定Context 的当前状态。

首先定义类BusProtocol ,它提供了一个片上总线的基本协议通道并处理改变状态的请求。BusProtocol 在state 成员变量中保持一个BusState 类的实例。类BusState 复制了BusProtocol的状态改变接口。每一个BusState 操作都以一个BusProtocol 实例作为一个参数, 从而让BusState 可以访问BusProtocol 中的数据和改变总线的状态。BusProtocol 将所有与状态相关的请求委托给它的BusState 实例state。BusProtocol 还提供了一个操作用于将这个变量设为一个新的BusState。BusProtocol 的构造器将该状态对象初始化为BusIdle 状态。

(2) 层适配模式

层适配模式为SoC通信建模提供分层的协议转换,将不同架构的网络协议通过接口的匹配,实现各层次的数据通信,提供事务级建模各层的适配方式。系统建模中通信机制可以分为4 层,其中事务级建模分为3 层,即除L0 之上的3 层为事务级。其中:L3 为消息层,这一层没有任何的时间信息,系统行为是事件驱动的,并建立点到点的通信. L2 为事务层,这一层的系统模型带有时间信息,但并不是时钟精确周期,系统是时间驱动执行的。

事务层将理想的结构映射到需要考虑资源分配和设计约束的结构中,完成SoC体系结构的分析和建模,并开始软件的开发。L1为传输层,它在RTL层之上,系统由精确到周期的行为组成,但比RTL 级的仿真速度要快。传输层建模一般对应一定的总线协议,将精确到周期的协议映射到给定的硬件接口和总线结构上,隐藏了接口的管脚,将事务直接映射到总线周期。层适配模式将通过适配完成各层次的模型转换。如图3 所示,TL1 Master Adapter通过适配TL1通道和TL2 通道,使TL1 Master 和TL2 Slave 通信。

图3  层适配模式结构

(3) 包装器模式

包装器模式的目的是通过调整接口和IP 组件的行为来适应特定的应用环境,它属于结构型模式.在SoC设计中,功能组装正在逐渐代替功能设计,而成为主流的设计方法。因此,各个IP模块的互连,以及与片上总线的通信成为研究的重点。IP的本质特征是可重用性,通常必然满足以下基本特征:通用性好,正确性有保证,可移植性好。因为许多IP在设计之初都是针对特定的应用,而很少考虑到要与外来电路搭配使用。IP的定义没有一个通用的接口标准,因为芯片实现的功能千差万别,性能方面的要求也由于应用领域的差异而不同,即使同样功能的IP模块在速度、面积、功耗、对外接口等方面也表现各异包装器模式的系统结构如图4 所示。

图4  包装器模式的系统结构

通过包装器模式的封装,能适配各种IP 接口。即使用包装器模式来调整组件接口以适应于环境要求。包装器模式的匹配程度,对IP Component 的接口与其他的接口进行匹配的工作量各个WrapperModel 可能不一样。从简单的接口转换(例如改变操作名) 到支持完全不同的操作集合,WrapperModel 的工作量取决于Component 接口与需要转 换接口的相似程度。

结束语

在SoC设计中,可重用性是应该考虑的一个很重要的因素. 除了IP复用,设计的可重用也是非常重用的。在讨论将现有软件设计模式应用到SoC设计当中后,提出了SoC设计模式,主要针对高层次的SoC设计中的最常用的一些设计方法,以及构筑SoC系统的基本组件和基本结构。除了上述的3 种模式,还提出的一系列的SoC设计模式中,总线模式属于体系结构的模式,包装器模式和层适配模式属于结构型模式,总线协议模式、管道模式和FSM模式属于行为型模式。下一步的工作是深入研究系统级设计方法,以及基于UML的软件设计模式描述如何自动地转换为元(meta) 程序。

关键字:对象  SystemC  总线 编辑: 引用地址:基于模式的SoC设计方法研究

上一篇:高速DSP系统PCB板的可靠性设计
下一篇:基于模式的SoC设计方法研究

推荐阅读最新更新时间:2023-10-12 23:12

【51单片机快速入门指南】6.3.1:使用1-WIRE搜索算法搜索单总线上所有DS18B20的ID
普中51-单核-A2 STC89C52 Keil uVision V5.29.0.0 PK51 Prof.Developers Kit Version:9.60.0.0 移植自1-WIRE搜索算法 串口部分见【51单片机快速入门指南】3.3:USART 串口通信 DS18B20驱动程序见【51单片机快速入门指南】6.3:DS18B20 单总线数字温度计的多路读取 源码 OWSearch.c #include DS18B20.h #include stdio.h // TMEX API TEST BUILD DECLARATIONS // long session_handle; // END
[单片机]
【51单片机快速入门指南】6.3.1:使用1-WIRE搜索算法搜索单<font color='red'>总线</font>上所有DS18B20的ID
基于LPC2210的ARINIC429总线测试装置研究
  ARINIC429航空总线简介   ARINIC429总线是上个世纪80年代商务飞机所广泛使用的一种航空总线。其信息内容综合了200多种航空参数,主要是为了解决航空设备中点对点的数据交互。   ARINIC429总线数据编码方式可以划分为二进制位数据编码(BNR)和二到十进制8421编码(BCD),使用32位的双极性非递归 1 0 组成,其中最高32位为奇偶校验位,每一帧的尾部加上4位静寂间隔位,码速率分为100Kbps和12.5Kbps两种。一般正常情况下接收端电平为+6V。+5V~+13V被认为是逻辑 高 ;-6.5V~-13V被认为是逻辑 低 ;-2.5V~+2.5V被认为是逻辑 空 ,为数据无效状态。  
[单片机]
基于LPC2210的ARINIC429<font color='red'>总线</font>测试装置研究
用于下一代分布电源结构的直流总线变换器和负载点电源模块技术
  在面对譬如电信机架或服务器机房的大型系统集成时,分布式 电源 结构出现了,从而满足了功率传递所面对的挑战。两种拓扑结构已经占了优势,但两者都没有完全地满足设计人员为追求高转换效率、少的总元件数目和用料清单成本、小的板上占位空间、设计简单的愿望。在新的演变中,中间总线结构(iba),提供了答案。这个方案的实现允许设计人员使用简化的功率模块来迅速配置一种紧凑和成本低的解决方案。    从传统进行演变   在两种占优势的dpa拓扑结构中,一种实现方法就是变换直流输入电压到系统中大多数元件要求的电平,比如说3.3v,这个电压直接用于为3.3v的元件供电,以及为产生其它系统电压的 负载点 (pol)变换器供电。但是,直接地把3
[电源管理]
用于下一代分布电源结构的直流<font color='red'>总线</font>变换器和负载点电源模块技术
基于PXI总线技术的风电测控系统设计
  面向仪器系统的PCI扩展PXI(PCIeXtensionsforInstrumentation)是一种坚固的基于PC的测量和自动化平台。PXI充分利用了当前最普及的台式计算机高速标准接口——PCI,结合了PCI的电气总线特性与CompactPCI的坚固性、模块化及Eurocard机械封装的特性,并增加了专门的同步总线和主要软件特性。这使它成为测量和自动化系统的高性能、低成本运载平台。   本文设计了基于PXI总线技术的风电测控系统。该系统通过直流调速设备控制电机对风力发电机齿轮箱产品进行实际的运行环境模拟,并对采集到的环境参数及噪声振动数据进行分析,最后生成检测报告。本文运用PXI硬件优越的定时、触发性能及LabVIEW
[工业控制]
CAN总线互连中网关的设计与实现
1、引 言     科技和社会的发展,使20世纪末的全球化市场竞争空前激烈。竞争中的企业逐渐开始实施计算机集成制造系统,采用系统集成、信息集成的观点来组织工业生产。在这个系统中,为实现现场智能设备之间的多点数字通信,计算机测控技术与计算机网络紧密地结合在一起,产生了能在工业现场环境运行、性能可靠、造价低廉的现场总线(FieldBus)技术。     现场总线是用于生产制造现场的最底层通信网络,它实现了微机化的现场测量控制仪器或设备之间的双向串行多节点数字通信。现场总线技术的关键是使自动控制系统与现场设备具备通信能力,将它们连接成网络系统,实现现场通信网络与控制系统的集成。作为网络系统,它具有开放统一的通信协议。CAN总线就是现场
[嵌入式]
基于IIS总线的嵌入式音频系统设计
摘要:介绍了基于IIS总线的嵌入式音频设备的硬件体系结构及其Linux驱动程序的设计。在音频驱动程序设计综合使用了DMA、分段多缓存区和内存映射技术以提高系统性能,满足音频实时性的要求。 关键词:音频设备驱动程序 IIS总线 嵌入式Linux DMA 内存映射 嵌入式音频系统广泛应用于GPS自动导航、PDA、3G手机等嵌入式领域,但目前国内在这方面的研究较少。 音频系统设计包括软件设计和硬件设计两方面,在硬件上使用了基于IIS总线的音频系统体系结构。IIS(Inter-IC Sound bus)又称I2S,是菲利浦公司提出的串行数字音频总线协议。目前很多音频芯片和MCU都提供了对IIS的支持。 在软件上,作为一个功能复杂的
[嵌入式]
现场总线的概念和特点
1.什么是现场总线   随着网络技术发展和市场需求的变化,工业设备实现网络化管理控制已经成为一种必然趋势,改善工业控制系统同样也需要在不同生产设备之间实现高效、可靠、标准化的互联,经过多年的努力,国际上最后公布了8种现场总线。制定总线的初衷在于不同厂家的设备进行互连,可是,这8种总线目前是不能完全互连的。   所谓现场总线,是指将现场设备(如数字传感器、变送器、仪表与执行机构等)与工业过程控制单元、现场操作站等互连而成的计算机网络,具有全数字化、分散、双向传输和多分支的特点,是工业控制网络向现场级发展的产物。现场总线控制系统FCS是集当今计算机技术、网络技术和控制技术为一体的当代最先进的计算机控制技术,它适用于工业过程控制、
[嵌入式]
CAN总线在测温系统中的应用
    控制器局部网(controller area network,CAN)属于现场总线的范畴,它是一种有效支持分布式控制的串行通讯网络,被公认为是最有前途的现场总线之一。本文利用MAX6675测温芯片作为传感器,使用CAN总线标准设计了一种智能测温系统(适用范围0℃~+1023.5℃)。该系统精度高(±0.5℃)、可靠性好、结构简单、成本低,在适用范围内可取代传统的测温系统,对该系统稍加修改,可使它应用于在多种测温场合。 1 硬件设计     硬件电路由微处理器、CAN控制器、测温芯片MAX6675、LED、键盘、复位电路、蜂鸣器等几部分组成,如图1所示。单片机AT89C51是硬件电路的核心,承担CAN 控制器的初始化、
[嵌入式]
小广播
最新半导体设计/制造文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved