基于单片机PIC16F877A的数控电流源设计

发布者:二进制游侠最新更新时间:2010-07-12 关键字:PIC16F877  数控电流源  开关电源 手机看文章 扫描二维码
随时随地手机看文章

1  引言

    电源技术尤其是数控电源技术是一门实践性很强的工程技术,涉及了电气、电子、系统集成、控制理论、材料等诸多学科领域。计算机和通讯技术的发展,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。普通电源由于精确度不高等缺点已不能满足现实的需要。直到单片机技术及电压转换模块的出现,才使精确数控电源的发展有了可能。本文所设计的数控电流源采用PIC16F877A单片机为核心部件,键盘、显示、D/A、开关电源等模块为外围电路。

2  设计要求和总体设计思路

2.1 设计要求

    本设计要求:输入220V,输出最高12V;通过键盘控制输出电流,步长为0.01A;采用LED显示输出电流,精度为0.02A;电流源稳流范围为(0.2-1)A。

2.2 总体设计思路

    本设计采用开关电源,以达到输出范围和精度以及纹波的要求。根据系统要求,采用D/A转换后,接运算放大器构成的功率放大来控制D/A的输入,从而控制电流值的方法。本系统主要由数控部分、电源部分和键盘显示电路组成。系统原理框图如图1所示。

3  硬件电路设计及软件选择

    根据数控电流源的设计要求,系统主要由控制模块、电源模块、D/A模块及键盘显示模块构成。

3.1 控制模块的选择

    本设计采用的是PIC16F877A单片机控制。与AT89C51单片机相比,PIC16F877A采用哈佛结构,能实现指令的单指节化,有精简指令集技术,寻址方式简单,I/O口驱动能力强,具备I2C和SPI串行总线端口,外围电路简洁,不仅便于开发,而且还可节省用户的电路板空间和制造成本。程序保密性强,有低功耗、宽电压设计,能将相当一部分外围器件结合到一起,使用方便,抗干扰性能提高。

3.2 电源模块的选择

    电源模块一般主要采用全桥整流加电容滤波电路、三端稳压集成电路外接扩流管和开关电源电路。全桥整流加电容滤波电路广泛应用于一些要求不太高的直流电流源中,其驱动能力和后级的滤波电容有关,该电路显著的特点就是能够比较好的满足电流的瞬态相应,而如果负载要求持续的大电流输出,该电路将无能为力。三端稳压集成电路外接扩流管既利用了稳压集成块良好的稳压性能,又能够有一定的电流输出,在一些高精度的线性稳压电源中被广泛采用,但是效果较差。开关电源的功率器件工作在开关状态,功率损耗小、效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的电流源具有效率高、体积小、重量轻等优点。

    由于本设计对电源的要求比较高,尤其体现在对电源的功率和纹波电压的要求上。因此,在这里采用的是开关电源电路。

3.3 D/A转换模块的选择

    TLC5615为美国德州仪器公司1999年推出的产品,是具有串行接口的数模转换器,其输出为电压型,最大输出电压是基准电压值的两倍。带有上电复位功能,即把DAC寄存器复位至全零。它是串行输入的10位高精度D/A转换器,因此经转换的最终输出电压可以达到0V~10V。10位D/A,分辨率为1/2048,选采样电阻为15kΩ,D/A输出的分辨率能实现步进0.01A。

3.4 软件的选择

    Protel 99 SE软件设计系统是一套建立在IBM PC兼容机环境下的EAD电路集成设计软件平台。它具有电路原理图设计、PCB(印制电路板)设计、电路的层次化设计、报表制作、电路仿真以及逻辑器件设计等功能。

    MICROCHIP公司为PIC系列单片机配备了功能强大的软件集成开发系统Mp lab,该软件是一个集成多种单片机应用开发工具软件于一体的、功能完备的软件包。

    本文采用Protel 99 SE软件设计系统进行PCB板的设计,Mp lab进行系统仿真

4  数控电流源的单片机程序实现

    本文所采用的PIC16F877A单片机是MICROCHIP公司开发的新产品,具有FLASH编程的功能,可以直接在单片机上进行如暂停CPU执行,观察寄存器内容等操作,是目前应用最广泛的一种PIC单片机。

    单片机程序所要实现的功能是:独立键盘对PIC16F877A单片机输入数据,PIC16F877A单片机对获得的数据进行处理,并送到10位数模转换器TLC5615,实现对电流的控制。

     在这里采用的是C语言编程,其优点是编写代码效率高、软件调试直观、维护升级方便、代码的重复利用率高、便于跨平台的代码移植等。主程序流程图如图2所示。

5  系统测试

    本设计要求输出电流范围为0.2A-1A,恒流源模块采样电阻两端电压为200mV-2000mV,由电压值可以推算出数模转换模块的参考电压|Vref|至少为2V(Vref<0)。本设计的Vref=-2.15V,输出端模拟电压范围为(0-12)V,所以输出电流为0.2A-1A。设计要求在0.2A-1A内任意预值,本设计通过键盘输入电流值送单片机,单片机根据输入的键值,将模拟量转换为数字量送给数模转换电路,然后输出模拟量。部分电流值及其对应的理论和实际的数字量如表1所列。其中对应理论码值为输入电流对应数模转换所需要的码值,实际码值为单片机根据输入电流值处理后送到数模转换器的码值。

    表1所列的测试结果表明,本设计输出的最大误差为当输入电流为32mA时,输出电流为33mA,误差为1mA。而题目中发挥部分要求输出电流变化的绝对值≤输出电流的0.1%+1mA,即1.032,所以本设计测量出来的误差值达到了设计要求规定的误差值。

6  结论

   本文所设计的数控电流源采用PID算法实现了量程可选、输出可调、步进精确、纹波电流极小的功能,而且可将输出电流预置值、实测值在LED上同时显示。人机接口采用独立键盘及LED显示器,控制界面直观、简洁,具有良好的人机交互性能。其具有控制灵活,系统升级方便,控制系统的可靠性提高,易于标准化,系统维护方便、一致性好、成本低,生产制造方便等优点。

关键字:PIC16F877  数控电流源  开关电源 引用地址:基于单片机PIC16F877A的数控电流源设计

上一篇:基于PIC的太阳能与市电互补照明系统控制器
下一篇:基于PIC单片机的数码虚拟环绕声控制器设计方案

推荐阅读最新更新时间:2024-03-16 12:29

开关电源原理
我们的系统里常会用到开关电源,主要用于获得一定功率的直流电源(多数是 24V),我们常看到的开关电源外观上多数象一个小主箱,通过表面开发很多散热孔可以看到里面的电路板,可它的工作原理可能我们还不是很清楚,下面介绍一下它的常识,要有一点电子电气知识才能更好的理解。 高频开关电源由以下几个部分组成: 一、主电路从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越校 4、输出整流
[电源管理]
一种基于大功率FET的数控直流电流源设计
  本文研制的电源是为满足生产和教学科研应用的直流恒流源。采用软硬件结合的方法,能够输出恒定直流0~2000mA,步进8mA,纹渡电流≤2mA。用户通过手动设定需要的数值,可以准确得到稳流输出。本系统拥有友好的界面,是可以应用在生产、科研及教学活动中的数控直流恒流源。并且,产品扩展了网络仪器的功能,用户通过远端监控。能够使本产品工作在比较恶劣的远端生产环境中,达到恒流输出的效果。   l 方案论证及比较   1.1 控制方案   方案一:采用数字信号处理器(DSP)。   DSP功能强大,能完成许多复杂的控制和数据处理任务,但其价格一直居高不下,成本较单片机高。对于恒流源控制来说,不具有普适性。   方案二:采
[电源管理]
一种基于大功率FET的<font color='red'>数控</font>直流<font color='red'>电流源</font>设计
开关电源变压器涡流损耗分析
  开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。变压器生产涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。   单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式
[电源管理]
<font color='red'>开关电源</font>变压器涡流损耗分析
技术解析:有效地降低开关电源开关损耗的原理
基于电感的 开关电源 (SM-PS)包含一个功率开关,用于控制输入电源流经电感的电流。大多数开关电源设计选择MOSFET作开关(图1a中Q1),其主要优点是MOSFET在导通状态具有相对较低的功耗。 MOSFET完全打开时的导通电阻(RDS(ON))是一个关键指标,因为MOSFET的功耗随导通电阻变化很大。开关完全打开时,MOSFET的功耗为ID2与RDS(ON)的乘积。如果RDS(ON)为0.02W,ID为1A,则MOSFET功耗为0.02*12=0.02W。功率MOSFET 的另一功耗源是栅极电容的充放电。这种损耗在高开关频率下非常明显,而在稳态(MOSFET连续导通)情况下,MOSFET栅极阻抗极高,典型的栅极电流
[电源管理]
ATMEGA16实现开关电源制作
  开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。以ATMEGA16单片机为控制核心,设计并制作了具有输出电压步进可调的开关电源。其硬件由整流、滤波、单片机供电电源、DC-DC变换及LED显示组成。经实验测定,输出电压0~9.9V步进0.1 V可调,输出电流1.5 A,当输出电压9V、输出电流1.5 A时,电压调整率小于0.67%,效率可达78.78%.   1 电源硬件电路设计与计算   1.1 系统总体设计   系统组成框图如图1所示。市电经整流滤波电路输出直流,采用EMI共模滤波器抑制市电中的干扰;+5 V单片机供电电源由MC34063构成;系统输出电压经反馈电路
[电源管理]
ATMEGA16实现<font color='red'>开关电源</font>制作
车载电源系统开关电源的设计
目前世界各国正在研究48VDC汽车用电源系统,欧共体计划从2008年开始采用48VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现48VDC/12VDC的转换会产生很大的功率损耗,缺点明显。 本文提出了一种具有过载和短路保护的车载电源系统的开关电源设计方案。该方案采用单端反激式结构实现48VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。 UC3842的保护电路设计 1 UC3842的典型应用 UC3842是高性能的单端输出式电流控制型脉宽调制(PWM)芯片,其典型应用电路如图1所示。 图1 UC3842典型应用电路 2 过
[应用]
如何测试单片机系统的可靠性
有网友希望了解用用什么方法来测试单片机系统的可靠性,邓宏杰指出:“当一个单片机系统设计完成,对于不同的单片机系统产品会有不同的测试项目和方法,但是有一些是必须测试的: 1.测试单片机软件功能的完善性。这是针对所有单片机系统功能的测试,测试软件是否写的正确完整。 2.上电、掉电测试。在使用中用户必然会遇到上电和掉电的情况,可以进行多次开关电源,测试单片机系统的可靠性。 3.老化测试。测试长时间工作情况下,单片机系统的可靠性。必要的话可以放置在高温,高压以及强电磁干扰的环境下测试。 4、ESD和EFT等测试。可以使用各种干扰模拟器来测试单片机系统的可靠性。例如使用静电模拟器测试单片机系统的抗静电ESD能力;使用突波杂讯模拟器进行快速脉
[单片机]
开关电源中电流检测电路的探讨
1引言 功率开关电路的电路拓扑分为电流模式控制和电压模式控制。电流模式控制具有动态反应快、补偿电路简化、增益带宽大、输出电感小、易于均流等优点,因而取得越来越广泛的应用。而在电流模式的控制电路中,需要准确、高效地测量电流值,故电流检测电路的实现就成为一个重要的问题。 本文介绍了电流检测电路的实现方法,并探讨在电流检测中常遇见的电流互感器饱和、副边电流下垂的问题,最后用实验结果分析了升压电路中电流检测方法。 2电流检测电路的实现 在电流环的控制电路中,电流放大器通常选择较大的增益,其好处是可以选择一个较小的电阻来获得足够的检测电压,而检测电阻小损耗也小。 电流检测电路的实现方法主要有两类:电阻检测(resisti
[测试测量]
<font color='red'>开关电源</font>中电流检测电路的探讨
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved