基于XC2C64A芯片的无线录井绞车信号检测电路设计

发布者:温暖微笑最新更新时间:2011-08-22 关键字:XC2C64A  无线录井绞车  信号检测 手机看文章 扫描二维码
随时随地手机看文章

  引言

  在录井仪器中,深度系统是最重要的部分,离开了深度系统中的井深,仪器中大部分参数都将失去意义[1]。而在深度系统中,大钩高度的测量是最为关键的。通过绞车信号的实时数据检测,可得到与大钩高度相关的绞车脉冲信号计数值,将该值传入上位机,通过相应的计算可以得到实时的井深。

  同时,基于太阳能和蓄电池供电的无线录井数据采集与传输系统要求现场绞车信号检测电路必须具有低功耗、小尺寸和抗干扰性强的特点。因此,采用分离元器件所设计的传统的绞车信号测量电路就不能满足无线录井系统的这些特殊要求。

  美国Xilinx公司的CoolRunner II系列CPLD芯片XC2C64A结合XC9500系列的高速度、方便易用和XPLA3系列的超低功耗等优点,具有低功耗、高密度、在系统可编程和抗干扰能力强等特点[2],在一颗芯片上就可以代替多颗传统逻辑芯片来实现复杂的组合与时序逻辑控制,能够达到低功耗、小尺寸和抗干扰性强的优良性能[3]。

  无线录井绞车信号检测电路的设计与实现

  绞车顺时针旋转时, 传感器输出A相波形超前B相波形90°;逆时针旋转时,输出A相波形滞后B相波形90°。其后的鉴相(方向鉴别)、倍频和计数就是基于如上输出的两相脉冲信号。

  绞车信号检测电路的整体结构(图1),包括绞车信号的整形、隔离、鉴相、倍频、计数和数据读取接口等部分。

  信号A和信号B是来自绞车传感器的相位差90?的两路脉冲信号,先经过第一次施密特整形,抑制现场干扰和线路衰减引起的脉冲波形畸变,转换为标准的脉冲信号;然后经数字隔离器进行电气隔离,隔离电路一方面对后面的电路起保护作用,另一方面起电压变换的作用,将信号转换为3.3V标准电压的脉冲信号;再经过第二次施密特整形电路进行整形,此次整形的主要目的是将两路脉冲信号的波形进行变换,产生A、B、AA(A的反相)和BB(B的反相)四路信号。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计
图1 绞车信号检测电路结构框图

[page]

  经第二次整形后,A、B两路信号经过单稳态触发器,在其上升沿和下降沿处分别进行触发,得到四个窄脉冲信号AU、AD,BU、BD。

  得到的A、B、AA、BB、AU、AD、BU、BD共8路信号输入到CPLD XC2C64A,进行倍频、鉴相和计数等处理,并在单片机的控制下对数据进行输出或清零。

  根据如上的设计原理,采用Xilinx公司的EDA软件ISE和模块化设计[4]的方法设计了无线录井绞车信号的检测电路,其顶层设计电路如图2所示,该电路包括两个子模块:倍频、鉴相子模块jch_4f_dir,具有4倍频和方向鉴别功能;16位二进制可控加减计数与数据接口子模块countud,具有加/减计数(由方向鉴别信号控制)和MCU选择读取高/低8位计数数据等功能。该电路在XC2C64A-7VC44I器件[5]上进行了下载测试。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计

 

  图2 绞车信号四倍频、鉴相与计数顶层电路图

  A、B、AA、BB、AU、AD、BU、BD共8路信号经过如图3中左侧所示的倍频电路,产生4倍频的脉冲信号,给后面的计数器提供计数时钟信号;如图3中右上侧所示的由与非门组成的RS触发器,是鉴相(方向鉴别)电路,可以得到反映绞车传感器A、B两相信号到达先后的方向信号A_B_DIR。假设绞车正转,A超前B,A_B_DIR=1;绞车反转, B超前A,A_B_DIR=0。

  鉴相(方向)信号A_B_DIR一方面连接到二选一数据选择器的选择输入端S0,用来控制A4F_OUT和B4F_OUT选通到如图2右侧所示的计数器countud进行计数,当A_B_DIR=1(A超前B)时,clk=A4F_OUT(有脉冲输出);当A_B_DIR=0(B超前A)时clk= B4F_OUT(有脉冲输出);同时,A_B_DIR也控制计数器进行加法(A_B_DIR=0)或减法(A_B_DIR=1)计数。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计

 

  图3 绞车信号四倍频与鉴相电路图

  16位二进制加/减计数器的主要功能设计描述如下所示(采用Verilog HDL)。其中,clk是计数时钟输入端,clr是异步清零端,dir是加减计数控制端:dir=1,减法计数,dir=0,加法计数;sel是计数数据读取控制端,由单片机给出的选择信号实现高8位、低8位的计数数据输出,sel=0,低8位,sel=1,高8位。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计

无线录井绞车倍频、鉴相与计数电路的仿真测试[page]

  在Xilinx的ISE环境下对倍频、鉴相子模块jch_4f_dir的仿真波形图示于图4。该波形是绞车传感器输出B相波形超前A相波形90°时的仿真结果。此时,倍频输出信号B4fout与A(或B)信号的频率成4倍关系,鉴相(方向鉴别)输出信号Dir=0,这与前面的原理分析完全一致。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计

 

  图4 B超前A的四倍频与鉴相输出信号波形图

  在ModelSim XEIII环境下对绞车检测顶层整体电路(包括倍频、鉴相和计数)的仿真波形图示于图5,该波形是绞车传感器输出B相波形超前A相波形90°时的仿真结果。此时,倍频输出信号B4OUT与A(或B)信号的频率成4倍关系,是计数器countud的时钟输入信号;鉴相(方向鉴别)输出信号A_B_DIR=0,即计数器的加减控制输入信号dir=0,计数器加法计数;单片机提供的数据读取选择信号SEL=0,选取16位计数器的低8位输出,输出的8位数据正是计数器按照四倍频时钟信号进行加法计数的结果。

  

基于XC2C64A芯片的无线录井绞车信号检测电路设计

 

  图5 B超前A的绞车检测输出(倍频、鉴相和计数)波形图

  在录井现场,使绞车传感器快速转动产生脉冲,经过电路处理后,传输到主控仪器房的工控机。在设计中考虑现场应用情况,采集到的脉冲计数值是在一个初始值N的基础上变化的(此处常使用30000,即0x7530),正转/反转变化脉冲数在此基础上做加/减运算。绞车传感器转动一圈产生48个脉冲数,现场试验数据分析表明,检测电路对绞车转动圈数的测量非常准确,误差仅是0.01%。

  结语

  采用一片XC2C64A-7VC44I器件(64个宏单元,33个I/O口,工业级–40°C to +85°C)设计并实现了无线录井绞车信号的检测电路,完成了绞车信号的四倍频、鉴相和16位二进制加减计数以及与MCU数据读取接口等综合功能。录井生产实际应用表明,该设计简化了系统结构,降低了系统功耗,从而提高了系统整体性能,在无线录井数据采集与传输系统中,应用效果很好。

 

 

关键字:XC2C64A  无线录井绞车  信号检测 引用地址:基于XC2C64A芯片的无线录井绞车信号检测电路设计

上一篇:Atmel 公司采用科胜讯的软调制解调器
下一篇:NUC1xx微控制器(MCU)的省电方式

推荐阅读最新更新时间:2024-03-16 12:39

基于热释电传感器的人体辐射检测电路设计
0 前言     近年来,随着电子信息技术的迅速发展,人们对于生活的信息化、自动化要求不断提高。传统的照明开关始终存在着一个弊端,即在夜晚或光线昏暗的时候,人们从室外走进室内时,需要摸索到开关然后再开灯,这样就给人们带来了极大的不方便和不安全,特别是对于老人、孕妇,还有孩子们更是如此。如果能将传统的机械开关,光控开关和对人体散发的热辐射具有感应功能的传感器相结合,做成一个能够自动开启灯光照明的装置,即当人进入室内时,传感器感受人体热辐射,控制开关打开灯光,将会给人们的生活带来很大的方便。本文利用热释电红外传感器,设计了一个基于热释电红外传感器的人体热辐射自动检测电路,实现了对人体热辐射的检测,为自动启动照明开关提供控制信号。 1
[嵌入式]
一种跳频MSK信号检测算法及FPGA 实现
引言   采用MSK 调制的跳频通信具有主瓣能量集中、旁瓣衰落滚降快、频谱利用率高和抗干扰能力强等优点,在军事通信中应用广泛。如美军现役的联合战术信息分发系统采用的通信信号,工作带宽969~1 206 MHz,跳频速率为 70000 多跳/ s, 单个频点驻留时间约为13 s,信号持续时间* s, 总共有51个间隔为3 MHz 的信道,码速率为5 MHz。已知在该工作频段内主要还存在单频、窄带调幅和线性调频等信号。为了准确截获并识别目标信号,针对此信号环境设计了一种MSK 信号检测识别方法,并使用FPGA 进行了设计实现。    1 算法设计    1.1 宽带跳频信号实时检测算法   用现代技术来实现宽带数字化接收
[嵌入式]
一种跳频MSK<font color='red'>信号检测</font>算法及FPGA 实现
基于DSP的实时震动信号分析处理系统设计
   1 引言   震动信号分析作为战场传感侦察系统的一个重要组成部分,主要探测地面运动目标的震动信号,对其信号实时分析和处理,并给出相应的识别信号,以判别震动目标类型、数量等信息。为了得到良好的震动信号,并能初步分析处理该信号,给出了一种基于DSP信号的实时震动信号分析处理系统设计方案。    2 系统硬件设计   2.1 震动传感器信号检测单元设计   系统传感器采用EG& GICSENSORS公司的3028型加速度传感器。由于该传感器的输出为差分输出,所以采用一个仪表放大器将其差分输出转换为单输出;又由于该传感器具有 16.8 mV的零位输出电压,因此第1级放大倍数应尽可能小,目标震动信号叠加在放大的零输出电压上可
[嵌入式]
铁路干扰信号检测的一次成功案例
关于通信信号研究所 通信信号研究所是铁道科学研究院(铁科院)下属的铁路通信信号技术领域具有科研、开发、生产、销售、服务整体功能的高科技企业。 通号所设有行车指挥自动化、车站计算机联锁、列车运行自动控制、编组站自动化、通信、光学、雷电及干扰防护和城市轨道交通7个专业事业部。拥有防雷、光学和无线通信三个全路中心试验室、十多个专业试验室和环行铁道通信信号系统综合试验基地,主要从事雷电干扰防护和城市轨道交通安全的研究。 主要测试问题 该研究所过去购买了一台DPO3000示波器,用来查看信号的波形,利用示波器FFT功能简单查看其频谱,非常不方便,看不到更多频谱细节。如果使用频谱分析仪,又不能同时看到时域波形。 问题解决方案 针对
[测试测量]
铁路干扰<font color='red'>信号检测</font>的一次成功案例
TMS320F2812在井下微弱瓦斯信号检测的应用
引言 目前瓦斯气体在矿井中的积累已成为困扰煤矿安全生产的重大难题,实现瓦斯气体的准确、有效地监控,对煤矿安全生产有极其重要的意义。由于矿井中存在着即有噪声以及生产中产生的大量噪声,被噪声淹没的微弱瓦斯信号相对于噪声来说显得及其微弱,如输入信号的信噪比为10–1 、10–2、有的甚至10–5 ,瓦斯信号被“深埋”在噪声之中,另外检测传输时又受到信号端、传输器件及变换器件等本身存在的噪声影响,表现出的总体效果是有用微弱瓦斯信号被大量的噪声和干扰所淹没。由于噪声具有随机性,而信号具有周期性、相关性,所以本文采用锁相放大原理中的相敏检波技术中互相关运算来削弱噪声的影响,然后在经过一个低通滤波器,此滤波器的频带宽度做的很窄,那么经过相敏检
[单片机]
TMS320F2812在井下微弱瓦斯<font color='red'>信号检测</font>的应用
基于DSP和FPGA技术的低信噪比雷达信号检测
  我国目前的海事雷达大多为进口雷达,有效探测距离小,在信噪比降为3 dB时已经无法识别信号。随着微电子技术的迅猛发展,高速A/D(模拟/数字转换)和高速数字信号处理器件(Digital Signal Proeessors,DSP)、高速现场可编程逻辑器件(Field ProgrammableGate Array,FPGA)的出现,可以在不增加现有雷达发射功率和接收灵敏度的前提下,在信噪比降为3 dB时能测到雷达信号,使雷达的有效作用距离提高。本文主要介绍基于DSP和FPGA技术的低信噪比情况下雷达信号的检测。   1 设计思想   本技术的设计思想主要是通过对接收到的雷达信号进行高速A/D采样,然后利用DSP和FPGA芯
[嵌入式]
基于FPGA和DSP的高速瞬态信号检测系统
   引 言   目前国内急需一种能够对电火工品的发火过程进行实时无损耗监测的方法和手段,并根据监测结果对火工品的可靠性进行准确的判决和认证,解决科研和生产过程中的具体问题。本系统采用感应式线圈作为非接触式启爆电流的启爆装置,并采用高速A/D、FPGA、DSP等先进的集成电路实现了电火工品的无损耗检测。其主要目的是:第一,解决电火工品可靠性试验中微秒级瞬态信号的检测、处理和存储技术;第二,为可靠性试验提供一种在线的无损耗实时检测系统,以便对电火工品的发火全过程进行监测;第三,为电火工品的发火可靠性认证和评估提供真实的评价依据,减少或杜绝因拒收产品而出现经济方面的风险,同时也可减少或杜绝因错误地接收产品而出现武器装备质量方面的隐患
[测试测量]
基于FPGA和DSP的高速瞬态<font color='red'>信号检测</font>系统
基于混沌理论的微弱信号检测的DSP实现
摘要:针对数字信号处理器(DSP)系统集成度高、速度快、功耗低、适合大量数据实时处理的特点,从应用的角度研究基于混少不了理论的微弱信号检测原理;深入讨论其应用于DSP的实用化,构建一个优化的TMS320C6203为核心的真实系统,实时实现基于混沌方法的微北信号检测。 关键词:DPS 混沌理论微弱信号检测 引言 在实际的数据采集和信号处理系统中,由于信号的幅值较小,测量时又受到信号端、传输器件及变换器件等本身存在的本底噪声的影响,表现出的总体效果是有用信号被大量的噪声和干扰所淹没。如何检测这种强噪声干扰情况下的微弱信号,是信号处理中的重要研究内容。许多科研工作者已提出了一些有效的处理方法,如基于高增益的宽带波束形成的微弱信号检
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved