基于单片机的电池管理系统设计

发布者:WhisperingHeart最新更新时间:2011-11-09 关键字:电池管理系统  均衡处理  CAN通信  下溢中断 手机看文章 扫描二维码
随时随地手机看文章

    混合动力汽车的整车性能很大程度上依赖于动力蓄电池。高性能、高可靠性的电池管理系统(Battery Management System,BMS)能使电池在各种工作条件下获得最佳的性能。电池管理系统不仅要监测混合动力电动汽车电池的充放电电流、总电压、单体电压和剩余电量SOC,还要预测电池的功率强度,以便监控电池的使用状况,在汽车启动和加速时提供足够的输出功率,刹车时电池组能回收更多的能量,即提供足够的输入功率,并且不对电池组造成伤害。当电池出现过充或过放、温度过高等异常情况时,电池管理系统会记录电池号、诊断电池故障并报警,同时整车控制系统对充电机和用电设备给出控制信号。因此,电池管理系统是混合动力汽车的重要电子控制单元之一,对保障电池的可靠性和安全性起到重要作用。

1 电池管理系统的功能
    电池管理系统的主要功能包括:电池状态参数的采集、电池状态的预测、电池组故障诊断、均衡保护以及通信等。
1.1 电池状态参数采集
    电池管理系统的所有算法都是以采集到的电池状态参数为基础的,因此必须保证数据的精确度。采用Freescale集成的10位A/D转换模块完成对单体电压、温度、总电压以及充放电电流的采集。
1.2 电池状态的预测
    电池状态预测包括两个方面。一方面是以安时积分法为基础的电池荷电状态的预测;另一方面是以电流、电压、温度为输入完成最大充放电功率的预测。整车控制器以这两个参数为参考,正确地进行功率分配。
1.3 电池组故障诊断
    能够根据采集到的参数,实时诊断电池温度过高、过低故障,电池过压、欠压故障,发出电池充放电电流过大、电池组绝缘故障警告。这是保证动力电池系统可靠、车辆行驶安全、满足用户驾车需求的重要技术手段。
1.4 均衡保护
    单体电池的差异性,不仅会导致电池组的使用寿命比单体电池短很多;同时,对于锂离子电池而言,由于其对充放电要求很高,当过充、过放、过电流及短路等情况发生时,锂离子电池压力与热量大量增加,容易产生火花、燃烧甚至爆炸。为确保安全性和稳定性,必须采取均衡措施。
1.5 通信功能
    主要指整车与电池管理系统的CAN通信。

2 分布式电池管理系统硬件组成
    目前,常用的电池管理系统设计方式主要有两种:分布式设计和集中式设计。分布式电池管理系统是将电池管理系统分为若干个子模块和一个主控制模块。每一个子模块能单独完成电池信息测量、电池能量均衡、通信等功能,每一个子模块都分别与一个电池模块连接在一起,各个子模块之间以及子模块与主控制模块之间通过总线进行通信。主控制模块完成电池信息的处理、荷电状态估算、电池故障诊断、电池组热管理、电池组与整车通信等功能。
    主控制模块和子模块分别采用Freescale 9S12系列的DP512和DG128作为处理器。系统硬件框图如图1所示。

a.JPG[page]

2.1 电源模块
    整车为BMS提供的电压是12 V,管理系统需要的电压有:5 V,单片机及驱动芯片用;±15 V,运放及电流传感器用。采用DC/DC模块将12 V电压转成5 V或者15 V。
2.2 A/D转换模块
    Frescale 16位系列芯片集成10位的A/D转换模块,满足整车的采样精度要求。A/D采样电路包括电压采样、电流采样与温度采样。子模块中用CPLD控制光耦阵列开关,实现模块电压巡检采样,主模块中直接对总电压周期采样;采用霍尔传感器实现电流采样;采用热敏电阻实现温度采样。
    DG128通过I/O向CPLD实时发送电池模块选通信号,CPLD根据传送过来的信号经由内部与非逻辑组合的运算,向高压光电隔离开关阵列发出控制信号,控制光电开关固态继电器分时导通;被选中的模块电压信号再经过线性隔离放大和低通滤波预处理,最后进入DG128的A/D转换模块。开关阵列控制隔离滤波电路如图2所示。

b.JPG
    如图3所示,设电池总电压为U,电阻R2两端的电压为U2,当求得R2两端的电压U2,即可反求U。为了提高U2的采样精度,抑制高频干扰,在R2两端增加由电阻R3和电容C1组成的低通滤波器,再经光藕AQW214隔离后,将U2传给线性光电隔离放大环节ISO124,最终传给DP512的A/D,经处理,求得U。

[page]

    图4中利用二极管单向导电性,将正负电流分别经过电阻和运算放大器组成的网络,最终转换为电压信号,进入A/D模块。

c.JPG

d.JPG
    图5中,虚线框内的RV,为热敏电阻,R2为低温漂精密电阻。5 V经R2分压,即可求得RV的阻值变化,查表进而得到对应的温度值。与测量其他信号一样,温度转换的电压信号也经过一个低通滤波器进入A/D模块。
2.3 均衡模块
    根据实时采集的数据,当电池管理系统认为某一单体电压BATn需要均衡时,给出均衡控制信号EQ_CTRLn,光耦闭合,MOS管导通,均衡电路启动,如图6所示。

e.JPG

[page]

2.4 CAN通信模块
    CAN通信是整车与BMS之间、BMS主控制模块和子模块之间的信息桥梁。子模块将采集到的单体电压和温度值通过CAN总线上传给主控模块,主控模块通过CAN总线给子模块下达均衡命令;主控模块将电池参数发送给整车,整车控制器通过判断决策能量分配。Freescale 9S12系列单片机已经集成CAN模块MSCAN,外扩引脚CANTX和CANRX。还需要PCA82C250来作为驱动芯片,如图7所示。

f.JPG

3 分布式电池管理系统的软件设计
    电池管理系统软件以CodeWarrior for HCS12V4.7为开发环境,采用C语言编写,包括了主控制模块和子模块两个部分的软件设计。
3.1 主控制模块
    主控制模块的任务主要有:A/D转换与数据处理任务、整车CAN接收任务、整车CAN发送任务、系统监控任务、SOC与能量估算任务以及均衡处理任务。中断有:A/D采集中断、定时器下溢中断、CAN接收中断。

g.JPG
    如图8所示,系统初始化工作完成后,软件以模/数减法计数器的下溢中断来确定系统的执行周期,计数周期为5 ms。在模/数计数器前一次下溢中断程序中,选择电压采集通道,并查询整车CAN接收;经5 ms在本次下溢中断到来后,中断服务程序进行A/D转换的启动,转换完成进入A/D中断,开启其他任务的执行,如此循环交替进行。根据整车控制策略,CAN上的电池状态数据每帧的刷新周期为10 ms,因此设置下溢中断的时钟节拍为5ms,相应地,以上所有任务的执行周期均为10 ms。
3.2 子模块
    子模块的任务主要有:A/D转换与数据处理任务、内部CAN接收任务、内部CAN发送任务、以及均衡执行任务。中断有:A/D采集中断、定时器下溢中断。

h.JPG
    如图9所示,软件以模/数减法计数器的下溢中断来确定系统的执行周期,计数周期为2.5 ms。在模/数计数器前一次下溢中断程序中,选择电压采集通道,并查询内部CAN接收;经2.5 ms在本次下溢中断到来后,中断服务程序进行A/D转换的启动,转换完成进入A/D中断,开启其他任务的执行,如此循环交替进行。其中,根据协议,内部CAN发送任务为保证周期为10 ms,要间隔一次A/D转换后才启动,其他任务执行周期则为5 ms。

4 结论
    基于Freescale单片机的分布式电池管理系统,用集成A/D转换模块实现实时数据采集,同时均衡控制功能还解决了电池单体电压不均衡造成的过充问题。Freescale 9S12系列单片机强大的数据处理功能,丰富的外围接口和良好的电磁兼容性满足了混合动力汽车电池管理的所有要求,在实际中得到了良好的效果。

 

关键字:电池管理系统  均衡处理  CAN通信  下溢中断 引用地址:基于单片机的电池管理系统设计

上一篇:多单片机直流电源控制板设计
下一篇:基于单片机的光伏正弦波逆变电源

推荐阅读最新更新时间:2024-03-16 12:45

儒卓力的元器件和专业建议帮助构建电池管理系统
当今要求严苛的电力应用(如能量存储、汽车和电动汽车) 使得电池设计日益复杂,必须通过电池管理系统(BMS)来确保最佳效率和安全性。全球电子元器件分销商儒卓力(Rutronik Elektronische Bauelemente GmbH)通过其RUTRONIK POWER产品系列提供卓越的BMS解决方案。 儒卓力以解决方案为本,认识到每个客户对电池功能和电池寿命都有独特的要求,需要从BMS的整体结构仔细考虑拓扑结构、功能模块和相关集成电路方面,才可以满足这些个性化需求。儒卓力与客户紧密合作,确保这些部分相互配合,成为最佳的BMS和充电方案。 预计中国和亚洲地区的高能量密度电池需求仍然很高,一般来说,这些地区的快速工业化推
[电源管理]
儒卓力的元器件和专业建议帮助构建<font color='red'>电池管理系统</font>
大佬济济的车用电子市场,美信凭啥抢风头
相较于其他国际晶片供应商,美信(Maxim Integrated)鲜少有公开场合的活动,所以对于美信的市场策略与解决方案的了解,就相对较为陌生许多。 不过,这次很难得地可以邀请到美信台湾业务总监陈建伟,来分享美信近期在部份应用市场与产品的市场策略,也让我们对于美信有了进一步的了解。   美信台湾业务总监陈建伟   在车用电子市场方面,美信其实已经耕耘了十年的时间,所以在解决方案的提供上,至少要符合AEC-Q100的规范,在LED照明方案上,聚焦在尾灯与日行灯(围绕在车前灯的周围),电源管理则是聚焦在资通讯娱乐的萤幕显示与电池管理系统(BMS)两大类别。但值得一提的是,外界对于美信的印象大多是类比与电源管理方案的主
[嵌入式]
BMS专家林健:国内外电池管理系统核心技术发展现状
图为:国家"千人计划"特聘专家、BMS专家 林健     大家下午好,我演讲的题目是国内外电池管理系统核心技术发展现状。电池管理系统范围较大,所以我们拿重点来讲,我讲的和大家平时在网上看的有点不一样,网上经常排名,中国BMS头十名、头二十名,他们是根据市场的客户排名,我主要是根据技术来讲差异。我大概讲这样一些,讲我们自己做的BMS系统,讲国产的BMS问题在哪里,讲核心技术,以及国内外BMS算法的评估。     这是我曾经做过的一些系统,第一辆车是福特的翼虎,这是美国的第一辆混合动力车,基本上是丰田的技术。后来我去了通用,主持了雪佛兰沃兰达的BMS系统。我们把这个磷酸铁锂电池算法难关攻克了,用在了Spark上。还有就是凯
[汽车电子]
基于CPLD的电池管理系统双CAN控制器的设计
电池管理系统是混合动力汽车中重要的电子控制单元,具有保障电池正常、可靠和高效工作的作用,是电池与用电设备之间的桥梁。在研制以及批量生产过程中都需要对其内部控制参数进行离线或在线匹配标定,而电池管理系统需要采集和处理大量的数据,本文选用TMS320LF2407作为标定用CAN控制器。作为电动汽车上的一个CAN节点,需要接收整车发来的CAN消息来执行对外部继电器、风扇以及电池等器件的控制命令,本文选用SJA1000。 双CAN硬件电路和CPLD逻辑设计 双CAN硬件电路设计 TMS320LF2407基于增强的哈佛结构,是地址线和数据线分离的微处理器,对晶振倍频后,频率高达40MHz。而SJA1000的地址线和数据线复用,增加了D
[嵌入式]
无线电池管理系统与高性能电动汽车的未来
全球汽车行业都将电动汽车视为未来的发展方向,电动汽车的新车型越来越多。高性能汽车制造商也纷纷加入这一趋势,从内燃机转向电气化。 电动汽车技术的好处不胜枚举,包括加速更快、动力更好以及起步时最大扭矩更高(基于仿真的目标规格)。 由于活动部件极少,电动机可靠性非常高,几乎不需要维护,并且能够提供非常精确的牵引和稳定控制。同时,产生的摩擦和热量更少,对冷却能力要求较低,因此效率也更高。电动汽车的每个指标都更好,除了电池重量这一指标。 ADI公司开发出了一项突破性的技术—— 无线电池管理系统(wBMS) ,该项技术能够省去电池线束和相关线缆,从而减轻电动汽车电池的重量,同时还能提高电池的可靠性。 为了实现轻量化汽车和全
[汽车电子]
无线<font color='red'>电池管理系统</font>与高性能电动汽车的未来
利用AVR的铅酸蓄电池管理系统原理及设计
1. 引言 本文以嵌入式 S3C2410为核心芯片,设计和实现了一种高速、高精度且具有一定处理能力的数据采集处理系统,并将其应用于工业过程水位和温度的实时监测。 在工业过程或实验室里,经常需要对多种信号进行同时采集及监测,以便实现性能分析、过程控制、系统恢复等目的。目前,常用的数据采集装置,多采用单片机实现,软件多采用单任务顺序机制,这使得系统不仅处理能力有限,而且存在稳定性差的问题。以嵌入式计算机为核心的嵌入式系统由于具有体积小、性能好、功耗低、可靠性高以及面向行业应用的突出特征,成为继 I T网络技术之后,又一个新的技术发展方向 。 2. 系统总体设计 本设计采用以 ARM9为核心的 S3C2410作为数据采集与处理的核
[电源管理]
利用AVR的铅酸蓄<font color='red'>电池管理系统</font>原理及设计
STM32单片机/小谈CAN通信
我认为CAN通信大概是所学通信里比较高级的了,说难也难,说不难也不难。本文只是结合stm32单片机来小谈一下,以此来帮助大家理解CAN通信。对于CAN通信的理论,原子哥的视频或者那本PDF《can入门教程》已经很详细全面了,我不能更好的给大家讲一遍了。如果你看了不懂,只能说看的遍数不够多。 CAN通信基本介绍 在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个 LAN,进行大量数据的高速通信”的需要, 1986 年德国电气商博世
[单片机]
Intersil推出汽车级锂离子电池管理系统和安全监视
全球高性能模拟混合信号半导体设计和制造领导厂商Intersil公司今天宣布,推出HEV/EV系统解决方案,该解决方案配备了汽车级锂离子 电池管理 系统和安全监视器。依托Intersil为便携式电子产品市场提供卓越的电池管理设备的悠久历史,汽车级 (AEC-Q100) ISL78600 多电池解决方案经过特别设计和测试,能够满足混合动力、插电式混合动力 (PHEV) 和电动车市场对安全、可靠性和性能的要求。   为了满足汽车市场严格的安全要求,Intersil的HEV/EV解决方案保证了客户遵从ISO26262 (ASIL) 规范,防止电池组出现故障。该解决方案还对所有主要内部功能提供了内置的故障检测,而且能够检测外部故障,例如线路中
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved