基于线性CCD的寻线智能车设计

发布者:Xingfu6666最新更新时间:2014-09-03 来源: 21ic关键字:智能车  速度控制  Kinetis  K10  TSL1401CL 手机看文章 扫描二维码
随时随地手机看文章

引言

以往的智能车竞赛分为光电组、摄像头组及电磁组。在本届比赛中,光电组首次尝试小车直立行走,并且首次采用线性CCD作为图像采集传感器。本文介绍以飞思卡尔Kinetis K10为主控芯片,如何使用线性CCD所采集的图像进行数据处理的过程以及基于独创的双速度控制算法,从速度控制上解决了智能车过障碍的问题。

1 设计原理

1.1 数据采集算法

检测路径参数可以使用多种传感器件,如光电管阵列、CCD图像传感器、激光扫描器等。各种检测方法都有相应优缺点,其中最常使用的方法为光电管阵列和CCD图像传感器。如何有效利用单片机内部资源进行路径参数检测,是确定检测方案的关键。

CCD传感器是一种新型光电转换器件,它能存储由光产生的信号电荷。当对它施加特定时序的脉冲时,其存储的信号电荷便可在CCD内作定向传输而实现自扫描。CCD有面阵和线阵之分,面阵是把CCD像素排成1个平面的器件;而线阵是把CCD像素排成1直线的器件。本设计中使用线性CCD作为图像传感元件。

在本设计中选用TSL1401CL线性CCD,TSL1401CL线性传感器阵列由一个128×1的光电二极管阵列、相关的电荷放大器电路和一个内部的像素数据保持器构成。该阵列由128个像素组成,其中每一个像素的光敏面积为3 524.3μm2,像素之间的间隔是8μm。该芯片操作简单,只需要一个串行输入信号和一个时钟信号即可进行数据的读取。

在CCD采集上,所采用的曝光时间自适应策略如图1所示。

基于线性CCD的寻线智能车设计

从图1可看出,该曝光时间自适应策略就是一个典型的闭环控制,控制对象是线性CCD模块的曝光时间,反馈是线性CCD感应到的曝光量。调节的目标是设定曝光量。控制器的工作原理是将设定的曝光量减去实际曝光量,差值即为曝光量的偏差e,曝光量调节器用Kp乘以e再加上上次的曝光时间作为新的曝光时间进行曝光,曝光时间调整后直接影响实际反馈的曝光量,如此反复进行调节就能达到适应环境光的目的。我们的做法是取一次采集到的128个像素电压的平均值作为曝光量当量,设定的曝光量也就是设定的128像素点平均电压。

1.2 数据处理算法

在图像处理中,采用边缘检测法检测赛道。因为赛道采回图像电压值不同,白色赛道与黑色赛道边缘的交界处会出现图像的凹槽,也就是图像数值的下降沿。将CCD的128个图像点进行坐标标注,由0~127,就可以确定出两边黑线的左右值。

得到左右坐标,根据公式“中线=(左坐标+右坐标)/2”,就提取到了中线。当然还要考虑边线丢失的情况,我们采取补线的策略,如果这一时刻坐标丢失就采用上一时刻未丢失的坐标代替,这样无论在十字弯、直道、弯道还是虚线,都可以实现很好的识别与控制,适应各种不同的赛道要求。

对电机的控制上,采用传统的PID控制算法。PID控制是最早发展起来的控制策略之一。PID控制器综合了关于系统过去(I)、现在(P)和未来(D)三方面的信息,控制效果令人满意。工业控制95%以上都采用了PID结构,具有简单、鲁棒性好和可靠性高的优点。

PID算法示意图如图2所示。

基于线性CCD的寻线智能车设计

其中,所采用的数字PID算法公式如下:

基于线性CCD的寻线智能车设计

综上所述.在小车控制系统的闭环部分均采用了传统数字PID算法或改进型智能PID算法。

2 双速度控制算法方案设计

2.1 传统速度控制算法

由于车模的整个行驶过程是时刻变化的,在赛道构成复杂且车模运行速度很高的情况下,对于系统的响应要求很快。因此速度控制必须具有迅速、准确、响应快的特点。由PID原理知:I(积分项)的迟滞效果会让控制系统响应变慢,因此为适应直立车模高速运行下的各种不同类型赛道,放弃官方设计方案中所推荐的PI控制,而采用反应更迅速、调节速度更快的PD控制。

直立车模是双电机分别控制左右轮,并且通过左右轮的差速进行转弯。在直立车的电机控制中,PWM波的输出是由直立控制量、速度控制量与转向控制量共同组成的,即:

电机输出量=直立控制量+速度控制量+转向控制量 (1)

传统速度控制算法中控制公式为:

速度控制量=速度设定值=速度测量值=速度设定值-(左轮速度+右轮速度)/2 (2)

由上式可知,实际值为左右轮速度的平均值。得到速度控制量同时加给左右电机,即左右电机速度控制量始终相同,由此可知左右电机速度控制量始终相同。在传统速度控制算法下,转向控制量相对于速度控制量来说相当于是一种扰动量。[page]

2.2 双速度控制算法

我们所设计双速度控制的思想如下:

左电机输出量=直立控制量+左轮速度控制量+转向控制量 (3)

右电机输出量=直立控制量+右轮速度控制量-转向控制量 (4)

因为在小车行驶过程中,小车保持直立,因此在小车直立行驶状态下,直立值为固定值,所以:

左速度控制量=没定值-左轮速度测量值 (5)

右速度控制量=设定值-右轮速度测量值 (6)

左、右轮速度值均由该轮速度控制量与转向控制量同时给定。

由此可知:

左轮速度控制量=设定值-(速度控制量测量值+转向控制量测量值)

右轮速度控制量=设定值-(速度控制量测量值+转向控制量测量值)

则实际上,转向控制量为速度控制闭环中一部分,在C语言实现时,将两控制量由同一控制算法计算。最终输出量为:

电机输出量=直立控制量+速度与转向控制量

由原理可知,在直道上行驶时,因为转向控制量接近于零,所以传统速度控制与我们所使用双速度控制下的速度输出量相同。转向时,由于图像采集后的PID控制产生转弯控制量,形成左右轮差速,实现车模转弯。传统速度控制模式下转弯控制量并不受速度控制调整,转弯量相对速度控制参数来说是一种扰动量,在双速度控制算法下,转弯量因对当前轮胎转速造成影响,故受到该轮速度控制调节。双速度控制下,当车模运行转弯时,双速度控制实际上会减缓车模入弯控制速度,加快车模出弯控制速度。实验效果上,因双速度控制减缓车模入弯控制量,则在很大程度上减小了车模因快速入弯而造成的侧滑以及侧翻,而对于出弯的快速调整,使车模可以在出弯后更快地调整车模位置,便于处理连续弯道及出弯后的障碍、虚线、起跑线等特殊赛道情况。因此,双速度控制下,转弯时速度控制量不为零,相当于系统转弯时始终有速度闭环存在,轮子的左右差速由速度闭环控制。

3 实验数据

以下为各种不同道路情况下,测得系统在不同路况下所能通过的最短时间,由光电门测量计时,如表1所列。

基于线性CCD的寻线智能车设计

由以上数据可以看出,在弯道越多时,双速度控制所带来的速度提升越明显,而在连续小S弯道时所带来的提升不大。

在本届智能车竞赛中,对光电平衡车来说,对于速度提升最大的考验是本届智能车首次加入的障碍部分。障碍部分最大的难点在于,车模直立状态经过障碍时,不可预测是车模的左轮还是右轮先经过障碍。在车模高速行驶经过障碍时,会出现车模腾空、车模电机失速的现象。当电机失速时,车模落地时左右轮哪一个先落地同样不可控,由此车模回归地面速度不可控,造成车模倒地或侧翻。

双速度控制在很大程度上可以减小车模在过障碍时的失速。当车模经过障碍时,无论是左轮还是右轮先经过障碍,车轮失速、双速度控制下,双电机的速度控制是独立的,又由于对电机的控制采用调节速度很快的PD控制,可以控制电机在失速回归地面后迅速调整车身姿态,在车身重心较低情况下,高速通过单个障碍。经反复试验,PD控制下的双速度控制可以很好地克服车模过障碍时对车模产生的影响,效果很好。

结语

本届竞赛,组委会首次要求光电组直立,本设计基于飞思卡尔K10芯片,首次尝试使用线性CCD作为图像处理传感器。根据线性CCD所采图像,通过PID控制原理,采用双速度控制算法对高度复杂的不同路况、障碍等情况都实现较好处理,效果良好。

关键字:智能车  速度控制  Kinetis  K10  TSL1401CL 引用地址:基于线性CCD的寻线智能车设计

上一篇:彻底看穿双核CPU Intel与AMD多核处理器剖解
下一篇:嵌入式工业以太网控制方案的研究

推荐阅读最新更新时间:2024-03-16 13:41

德承嵌入式系统助力智能车载在后疫情时代迅速复苏
近年来因大数据分析与人工智能的高速发展,大幅提升智能交通在不同层次上的创新,尤其以车载领域较为明显,而其中的智能巴士、公共安全车辆(警车/消防车/救护车等)管理及车队管理更是时下热门的应用趋势。从智能巴士的到站信息推播、司机疲劳监测、车内安全监控,到公共安全车辆的紧急回应、救护车人员即时查询医疗纪录、行车路线的优先安排,以及车队管理中的派车效率优化、车辆状态实时报告、车辆路线监控等不同应用,都挑战着各家厂商迅速应对的关键能力。素以灵活、稳健知名的嵌入式系统制造商-德承,以优于业界完整且齐全的嵌入式系统产品线Diamond系列,在效能、尺寸、功能上提供机动且快速的配置,符合智能车载产业的客户在紧迫时间下追求稳定质量的严格要求。
[汽车电子]
德承嵌入式系统助力<font color='red'>智能车</font>载在后疫情时代迅速复苏
创建并移植K10 BSP包的具体步骤和方法(二)
3. BSP包代码的修改   在C:\Freescale\Freescale_MQX_4_0\mqx\source\psp\cortex_m文件夹里的psp_cpudef.h文件中可以找到支持Kinetis K10/K20/K30/K40/K50/K60/K70等相关芯片的PSP宏定义,例如支持K10DN512的宏定义为:   #define PSP_CPU_MK10DN512Z (PSP_CPU_NUM(PSP_CPU_ARCH_ARM_CORTEX_M4, PSP_CPU_GROUP_KINETIS_K1X, 2))   同时在该文件中还可以找到所有Freescale指定PSP处理器支持包所支持内核的宏定义,如ColdF
[模拟电子]
创建并移植<font color='red'>K10</font> BSP包的具体步骤和方法(二)
基于MC9S12DG128单片机的智能车控制系统设计
在智能车竞赛中,参赛队伍应在车模平台基础上,制作一个能够自主识别路线的智能车,然后在专门设计的赛道上自动识别道路并行驶。本文所设计的智能车,采用16位MC9S12DG128单片机作为数字控制器,由安装在车前部的黑白CMOS摄像头负责采集赛道信息,在单片机对信号进行判断处理后,由PWM发生模块发出PWM波对转向舵机进行控制,从而完成智能车的转向。智能车后轮上装有旋转编码器,可用来采集车轮速度的脉冲信号,然后由单片机使用PID控制算法处理后的控制量去改变电机驱动模块的PWM波占空比,从而控制智能车的行驶速度。 1 系统硬件电路组成 设计有效的智能车控制系统必须首先掌握控制对象的特性。根据对智能车特点的分析,可以认为,智能车转向控制
[单片机]
基于MC9S12DG128单片机的<font color='red'>智能车</font><font color='red'>控制</font>系统设计
基于P87C591控制器和速度预测模型实现机车节能运行控制系统的设计
1、引言 铁路运输消耗能源巨大,铁路行业节能任务艰巨。如何使铁路列车更节能具有重要意义。基于预测控制理论的机车节能运行控制系统通过建立机车节能运行速度预测模型来预测列车节能运行的速度-距离曲线,从而建立列车节能系统,机车司机根据提示信息控制机车节能运行。该机车节能运行控制系统简单可靠,对电力机车乃至工业控制具有实用参考价值。 2、系统设计 图1给出基于预测控制理论的机车节能运行控制系统结构框图。信息采集单元负责采集供信息实时计算单元使用的开关量、模拟量、数字量,并通过软件调理数据,最终将有用信息发送到CAN总线上供其他单元接收;信息实时计算单元接收CAN总线上的有用数据,并处理数据,以便计算软件调用,循环计算机车牵引力、制动力
[嵌入式]
基于P87C591<font color='red'>控制</font>器和<font color='red'>速度</font>预测模型实现机车节能运行<font color='red'>控制</font>系统的设计
共享单车陷入危机,NB-IoT和eMTC融合的智能车锁能否改变局势
自2015年起,北上广深等一线城市的街边,陆续出现了很多漆着统一色彩图案的橙色,黄色,蓝色,绿色的自行车,“ 共享单车 ”这个词语也随之应运而生。使用者只需通过智能手机的App充值后进行扫码解锁,便可以随取随用,十分便捷, 一时间,各种颜色的共享单车遍布大街小巷,在整个 物联网 概念的大背景下,几大共享单车运营企业也成了风口上的猪,市值不断攀升,其中领军代表摩拜的市值,已经超过百亿。   作为物联网旗帜下最鲜明的代表,“共享单车”上到底有哪些科技要素?未来更会如何影响到科技乃至核心的半导体产业呢?IHS Markit 高级分析师何晖,将为您解读共享单车的科技应用及未来物联网的愿景。 共享单车的模式是高度依赖于目前覆盖度愈来
[嵌入式]
基于GSM的新型智能车牌报警系统设计
随着人们生活水平的提高,城市中汽车的数量剧增,从而带动了很多相关行业的发展,然而很多的不法分子也打起了偷盗车牌的主意,用来敲诈车主,这让车主很是头疼,也严重地影响了社会的和谐发展。 早期的车牌固定是用两个普通的螺丝将车牌固定之后用一个防护帽扣在外面防止螺丝外露,螺丝防护帽是铝、普通钢和塑料制品,只能紧固,不能防盗、防卸,用螺丝刀一撬就脱落,不能防止车牌被盗。这些车牌防盗装置绝大部分都是机械式的,它们的共性是增加了车牌被撬的难度,没有任何报警装置;还有的车牌报警装置是当车牌发生松动或车牌被拿下之后发出报警声音,只是起到警示作用。如果车主不在现场,会很难得到车牌被盗的报警信息,这种报警装置没有真正意义上向车主报警。 基于GSM的新型智能
[单片机]
基于GSM的新型<font color='red'>智能车</font>牌报警系统设计
NI CEO:融合技术有助解决高性能计算问题
Truchard博士在今年的NIWeek会议上发表讲话时提道,当他在上世纪六十年代开始他作为物理学者的职业生涯时,存在这样一种乐观观点,即融合技术将提供无限的电能。 “事实是当我们无法解决与其相关的技术问题时,这种情况一直都未发生。National Instruments公司的LabVIEW现已被马克斯普朗克学会用在多个多核服务器上,从而为高性能计算提供高性能I/O,以找到这个问题的另外一个突破口。 “基于FPGA的I/O和多核编程的这种结合可以在这个极其困难的问题上找到另一个突破口,如果我们解决了这个问题,这将成为我们曾经经历的最令人兴奋的事情之一。” 位于德国加兴市和格赖夫斯瓦尔德市的马克斯普朗克等离子物理研究所(Max
[焦点新闻]
智能车控制系统中功率芯片的应用经验
智能车灯控制系统概述 本文介绍了在智能车灯控制系统中功率芯片的应用经验,与传统技术进行了对比,结合实例具体分析了其实现的智能诊断技术在实际产品应用中的技术优势和发展前景。 现今MCU和电力电子技术在智能车灯控制系统中发展的趋势是用智能功率IC替代传统的继电器和保险丝,有效实现对车灯的过热、过压、短路等故障的保护和诊断;MCU用PWM调制来实现对车灯两端的电压进行控制,以达到限制车灯电流,延长使用寿命的目的,而且能轻松实现车灯故障时的自动替换并极大地降低待机功耗。 我们采用Infineon高端开关应用于智能车灯控制系统中。以下详细介绍其在实际产品中的应用经验。 Infineon芯片新功能 智能车灯控制系统由轿车中
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved