新型实时时钟芯片DS12887原理与应用
1. DS12887的功能特点
DS12887是美国达拉斯半导体公司最新推出的时钟芯片,采用CMOS技术制成,把时钟芯片所需的晶振和外部锂电池相关电路集于芯片内部,同时它与目前 IBM AT计算机常用的时钟芯片MC146818B和DS1287管脚兼容,可直接替换。采用DS12887芯片设计的时钟电路勿需任何外围电路并具有良好的微机接口。DS12887芯片具有微轼耗、外围接口简单、精度高、工作稳定可靠等优点,可广泛用于各种需要较高精度的实时时钟场合中。其主要功能如下:
(1)内含一个锂电池,断电情况运行十年以上不丢失数据。
(2)计秒、分、时、天、星期、日、月、年,并有闰年补偿功能。
(3)
GND,VCC:直流电源+5V电压。当5V电压在正常范围内时,数据可读写;当VCC低于4.25V,读写被禁止,计时功能仍继续;当VCC下降到3V以下时,RAM和计时器被切换到内部锂电池。
MOT(模式选择):MOT管脚接到VCC时,选择MOTOROLA时序,当接到GFND时,选择INTEL时序。
SQW(方波信号同):SQW管脚能从实时时钟内部15级分频器的13个抽头中选择一个作为输出信号,其输出频率可通过对寄存器A编程改变。
AD0~AD7(双向地址/数据复用线):总线接口,可与MOTOROLA微机系列和INTEL微机系列接口。
AS(地址选通输入):用于实现信号分离,在AD/ALE的下降沿把地址锁入DS12887。
DS(数据选通或读输入):DS/RD客脚有两种操作模式,取决于MOT管脚的电平,当使用MOTOROLA时序时,DS是一正脉冲,出现在总线周期的后段,称为数据选通;在读周期,DS指示DS12887驱动双向总的时刻,在写周期,DS的后沿使DS12887锁存写数据。选择INTEL时序时,DS称作(RD),RD与典型存贮器的允许信号(OE)的定义相同。
R/W(读/写输入):R/W管脚也有两种操作模式。选MOTOROLA时序时,R/W是一电平信号,指示当前周期是读或写周期,DSO为高电平时,R/W高电平指示读周期,R/W低电平指示写周期;选INTEL时序,R/W信号是一低电平信号,称为WR。在此模式下,R/W管脚与通用RAM的写允许信号(WE)的含义相同。
CS(片选输入):在访问DS12887的总线周期内,片选信号必须保持为低。
IRQ(中断申请输入):低电平有效,可作微处理的中断输入。没有中断条件满足时,IRQ处于高阻态。IRQ线是漏极开路输入,要求外接上接电阻。
RESET(复位输出):当该脚保持低电平时间大于200ms,保证DS12887有效复位。
3. DS12887的内部功能
3.1 地址分配图
DS12887的地下分配图如图3所示,由114字节的用户RAM,10字节的存放实时时钟时间。日历和定闹RAM及用于控制和状态的4字节特殊寄存器组成,几乎所有的128个字节可直接读写。
3.2 时间、日历和定闹单元
时间和日历信息通过读相应的内存字节来获取,时间、日历和定闹通过写相应的内存字节设置或初始化,其字节内容可以是十进制或BCD形式。时间可选择12小时制或24小时制,当选择12小时制时,小时字节搞位为逻辑“1”代表PM。时间、日历和定闹字节是双缓冲的,总是可访问的。每秒钟这10个字节走时1 秒,检查一次定闹条件,如在更新时,读时间和日历可能引起错误。三个字节的定闹字节有两种使用方法。第一种,当定闹时间写入相应时、分、秒定闹单元,在定允许闹位置高的条件下,定闹中断每天准时起动一次。第二种,在三个定闹字节中插入一个或多个不关心码。不关心码是任意从C到FF的16进制数。当小时字节的不关心码位置位时,定闹为小时发生一次由于相线小时和分钟定闹字节置不关心位时,每分钟定闹一次;当三个字节都置不关心位时,每秒中断一次。
3.3 非易失RAM
在DS12887中,114字节通用非易失RAM不专用于任何特殊功能,它们可被处理器程序用作非易失内存,。在更新周期也可访问。
3.4 中断
RTC实时时钟加RAM向处理器提供三个独立的、自动的中断源。定闹中断的发生率可编程,从每秒一次到每天一次,周期性中断的发生率可从500ms到 122μs选择。更新结束中断用于向程序指示一个更新周期完成。中断控制和状态位在寄存器B和C中,本文的其它部分将详细描述每个中断发生条件。
3.5 晶振控制位
DS12887出厂时,其内部晶振被关掉,以防止锂电池在芯片装入系统前被消耗。寄存器A的BIT4~BIT6为010时打开晶振,分频链复位,BIT4~BIT6的其它组合都是使晶振关闭。
3.6 方波输出选择
如图1原理图所示,15级分步抽着中的13个可用于15选1选择器,选择分频器抽头的目的是在SQW管脚产生一个方波信号,其频率由寄存器A的 RS0~RS3位设置。SQW频率选择与周期中断发生器共离15选1选择器,一旦频率选择好,通过用程序控制方波输出允许位SWQE来控制SQW管脚输出的开关。
3.7 周期中断选择
周期中断可在IRQ脚产生500ms一次到每122μs一次的中断,中断频率同样由寄存A确定,它的控制位为寄存器B中的PIE位。
3.8 更新周期
DS12887每秒执行一次更新周期还比较每一定闹字节与相应的时间字节,如果匹配枵三个字节都是不关心码,则产生一次定闹中断。
4. DS12887状态控制寄存器
DS12887有4个控制寄存器,它们在任何时间都可访问,即使更新周期也不例外。
4.1 寄存器A
BIT7
BIT6
BIT5
BIT4
BIT3
BIT2
BIT1
BIT0
UIP
DV2
DV1
DV0
RS3
RS2
RS1
RS0
UIP:更新周期正在进行位。当UIP为1,更新转换将很快发生,当UIP为0,更新转换至少在244μs内不会发生。
DV0,DV1,DV2:用于开关晶振和复位分频链。这些位的010唯一组合将打开晶振并允许RTC计时。
表1列了邮周期中断率和方波频率。
RS3,RS2,RS1,RS0:频率选择位,从15级频率器13个抽头中选一个,或禁止分频器输入,选择好的抽头用于产生方波(SQW管脚)输出和周期中断,用户可以:
(1)用PIE位允许中断:
(2)用SQWE位允许SQAW输出;
(3)二者同时允许并用相同的频率;
(4)都不允许
4.2 寄存器B
BIT7
BIT6
BIT5
BIT4
BIOT3
BIT2
BIT2
BIT1
SET
PIE
ALE0
VIE
SQWE
DM
24/12
DSE
SET:SET为0,时间更新正常进行,每秒计数走时一次,当SET位写入1,时间更新被禁止,程序可初始化时间和日历字节。
PIE:周期中断劲旅位,PIE为1,则允许以选定的频率拉低IRQ管脚,产和不足齿数民:PIE为0,则禁止中断。
AIE:定闹中断允许位,PIE为1,允许中断,否则禁止中断。
SQWE:方波允许位,置1选定频率方波从SQW脚输出;为0-时,SQW脚为低。
DM:数据模式位,DM为1青蛙为十进制数据,而0表明是BCD码的数据。
24/12:小时格式位,1表明24小时械,而0表明12小时械。
DSE:P夏令时允许位,当DSE置1时允许两个特殊的更新,在四月份的第一时期日、时间从1:59:59AM时改变为1:00:00AM,当DSE位为0,这种特殊修正不发生。
4.3 寄存器C
BIT7
BIY6
BIT5
BIT4
BIT3
BIT2
BIT1
BIT0
IRQF
PF
AF
VF
0
0
0
0
IRQF:中断申请标志位。当下列表达式中一个或多个为真时,置1。
PF=PIE=1;AF=AIE=1;
UF=UIE=1;
即:IRQF=PF·PIE+AF·AIE+UF·UIE
只要IRQF为1,IRQ管脚输出低 ,程序读寄存器C以后或RESET管脚为低后,所有标志位清零。
AF:定闹中断标志位,只读,AF为1表明现在时间与定闹时间匹配。
VF:更新周期结束标志位。VF为1表明更新周期结束。
BIAT0~BIT3:未用状态位,读出总为0,不能写入。
4.4 寄存器D
BIT7
BIT6
BIT5
BIT4
BIOT3
BIT2
BIT1
BIT0
VRT
0
0
0
0
0
0
0
VRT:内部锂电池状态位,平时应总读出1,如出现0,表明内部锂电池耗 尽。
BIT0~BIT6:未用状态位,读出总为0,不能写入。
5. 硬件接口电路
DS12887时钟芯片和80C31单微机的接口电路如图4所示。模式选择脚MOT拉地,选择不NTEL时序,选择DS12887时钟芯片的地址总线及 AS端口和80C31单片微机的P0及ALE端直接相联;而DS、R/W读写控制线与单片机的RD、WAR控制线相连;DS12887的高位地址由 80C31半日片机的P2.7端口来片选,则DS12887的高8位地址定为7FH,而其低8侠地址则由芯片内部各单元的地址来决定(00H~3FH); DS12887的中断输出端IRQ和80C的外部INT0端相联,给单片机提供中断信号;DS12887的SQW端口可编程产生方波输出信号。
6. 接口软件
下面为DS12887时钟芯片和80C31单片机的接口软件,假定采用每天24小时制的非夏令时,时间数据格式为BCD码,初始化时间为1996年1月1 日9时00分00秒,1k方波输出。时钟芯片每一秒种向单片机申请中断一次,一方面让单片机修改一次时钟显示,另一方面也给单片微机系统提供时间基准。
(1)DS12887时钟芯片的初始化写入程序
MOV DPTR,#7F0AH;寄存器A地址
MOV A,#70H:DV2~DV0=111,分频复位
MOVX @ DPTR,AA
INC DPTR:到寄存器B地址
MOV A,#8AH:停止更新,允许更新中断,选BCD码,24小时制
MOVX @DPRT,A
MOV QPL,#00H,秒单元地址
CLR A:00秒
MOVX @DPTR,A
MOV DPL,#02H;分单元地址
CLR A:00分
MOVX @DPTR,A
MOV DPL,#04H;时单元地址
MOV A,#09H;9时
MOVX @DPTR,A
MOV DPL#07H;日单元地址
MOV A,@01H:1日
MOVX @DPTR,A
INC DPTR:到月单元地址
MOV A,#01H;1月
MOVX @DPTR,A
IC DPTR:到年单元地址
MOV A,#96H;1996年
MOVX @DPTR,A
INC DPTR;到寄存器A地址
MOV A,#26H;DV2~DV0=010 RS3~RS0=0110
MOVX @DPTR,A:选周期中断率为976.5625μs,允许方波输出,频率1kHz
INC DPTR:到寄存器B
MOV A,#1AH;每秒更新一次,允许方波输出,24小时制
MOVX @DPTR,A:时钟开始运行
(2)读取DS12887时钟日历数据程序
DS12887的日历时钟通常有中断和查询两种方法读出。但在读数据时,首先要判断数据是否更新结束,只有在数据更新结束时数据读出才有效。
①采用查询法读取数据:
查询寄存器A的UIP位,当UIP=0时,数据更新结束,可以读出。以下是采用查询方法,从秒至年单元的数据读出后存入80C31内部RAM的30~35H单元中,该部分程序如下:
MOV DPTR,#7F0AH;寄存器A地址
MOVX A,@DPTR
WAIT:JB ACC,7,WAIT:UIP=1则等待更新完毕
MOV DPL,@00H;秒地址
MOV R0,#30H;取目标首地址
MOVX A,@DPTR;取秒数据
MOV @R0,A:送入80C31的内部RAM缓冲区
IC DPTR:移指针
IC R0
;以下略
②采用中断法读取数据
当DS12887发出中断请示,单片微机可以响应中断而读取日历数据。对于更新结束中断,中断时更新结束,数据有效,可以直接读取日历数据;对于闹钟中断和周期中断也需查询寄存器A的UIP位,当UIP=0时,数据更新结束,再读出日历时钟,具体指令这里不再列出。
#include
/* 命令常量定义 */
#define CMD_START_DS12C887 0x20 /* 开启时钟芯片
*/
#define CMD_START_OSCILLATOR 0x70 /* 开启振荡器,
处于抑制状态 */
#define CMD_CLOSE_DS12C887 0x30 /* 关掉时钟芯片
*/
/* 所有的置位使用或操作,清除使用与操作 */
#define MASK_SETB_SET 0x80 /* 禁止刷新 */
#define MASK_CLR_SET 0x7f /* 使能刷新 */
#define MASK_SETB_DM 0x04 /* 使用HEX格式
*/
#define MASK_CLR_DM 0xfb /* 使
用BCD码格式 */
#define MASK_SETB_2412 0x02 /* 使
用24小时模式 */
#define MASK_CLR_2412 0xfd /* 使用12小时模
式 */
#define MASK_SETB_DSE 0x01 /* 使用夏令时 */
#define MASK_CLR_DSE 0xfe /* 不使用夏令时
*/
/* 寄存器地址通道定义 */
xdata char chSecondsChannel _at_ 0xdf00;
xdata char chMinutesChannel _at_ 0xdf02;
xdata char chHoursChannel _at_ 0xdf04;
xdata char chDofWChannel _at_ 0xdf06;
xdata char chDateChannel _at_ 0xdf07;
xdata char chMonthChannel _at_ 0xdf08;
xdata char chYearChannel _at_ 0xdf09;
xdata char chCenturyChannel _at_ 0xdf32;
xdata char chRegA _at_ 0xdf0a;
xdata char chRegB _at_ 0xdf0b;
xdata char chRegC _at_ 0xdf0c;
xdata char chRegD _at_ 0xdf0d;
/* 函数声明部分 */
void StartDs12c887(void);
void CloseDs12c887(void);
void InitDs12c887(void);
unsigned char GetSeconds(void);
unsigned char GetMinutes(void);
unsigned char GetHours(void);
unsigned char GetDate(void);
unsigned char GetMonth(void);
unsigned char GetYear(void);
unsigned char GetCentury(void);
void SetTime(unsigned char chSeconds,unsigned char chMinutes,unsigned char
chHours);
void SetDate(unsigned char chDate,unsigned char chMonth,unsigned char chYear);
/*************************************************************
函数功能:该函数用来启动时钟芯片工作
应用范围:仅在时钟芯片首次使用时用到一次
入口参数:
出口参数:
*************************************************************/
void StartDs12c887(void)
{
chRegA = CMD_START_DS12C887;
}
/*************************************************************
函数功能:该函数用来关闭时钟芯片
应用范围:一般用不到
入口参数:
出口参数:
*************************************************************/
void CloseDs12c887(void)
{
chRegA = CMD_CLOSE_DS12C887;
}
void InitDs12c887()
{
StartDs12c887();
chRegB = chRegB | MASK_SETB_SET; /* 禁止刷新 */
chRegB = chRegB & MASK_CLR_DM | MASK_SETB_2412 \
& MASK_CLR_DSE;
/* 使用BCD码格式、24小时模式、不使用
夏令时 */
chCenturyChannel = 0x21; /* 设
置为21世纪 */
chRegB = chRegB & MASK_CLR_SET; /* 使能刷新 */
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取秒字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetSeconds(void)
{
return(chSecondsChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取分字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetMinutes(void)
{
return(chMinutesChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取小时字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetHours(void)
{
return(chHoursChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取日字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetDate(void)
{
return(chDateChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取月字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetMonth(void)
{
return(chMonthChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取年字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetYear(void)
{
return(chYearChannel);
}
/*************************************************************
函数功能:该函数用来从时钟芯片读取世纪字节
应用范围:
入口参数:
出口参数:
*************************************************************/
unsigned char GetCentury(void)
{
return(chCenturyChannel);
}
/*************************************************************
函数功能:该函数用来设置时钟芯片的时间
应用范围:
入口参数:chSeconds、chMinutes、chHours是设定时间的压缩BCD码
出口参数:
*************************************************************/
void SetTime(unsigned char chSeconds,unsigned char chMinutes,unsigned char
chHours)
{
chRegB = chRegB | MASK_SETB_SET; /* 禁止刷新 */
chSecondsChannel = chSeconds;
chMinutesChannel = chMinutes;
chHoursChannel = chHours;
chRegB = chRegB & MASK_CLR_SET; /* 使能刷新 */
}
/*************************************************************
函数功能:该函数用来设置时钟芯片的日期
应用范围:
入口参数:chDate、chMonth、chYear是设定日期的压缩BCD码
出口参数:
*************************************************************/
void SetDate(unsigned char chDate,unsigned char chMonth,unsigned char chYear)
{
chRegB = chRegB | MASK_SETB_SET; /* 禁止刷新 */
chDateChannel = chDate;
chMonthChannel = chMonth;
chYearChannel = chYear;
chRegB = chRegB & MASK_CLR_SET; /* 使能刷新 */
}
上一篇:AT93C46汇编读写示例程序
下一篇:PCF8563时钟+AT24C02+LCD12864显示时钟程序
推荐阅读最新更新时间:2024-03-16 15:51