向大家介绍 STM32F1 的位带操作,让 STM32 的位操作和 51 单片机的位操作一样简单。
位带操作
在学习 51 单片机的时候就使用过位操作,通过关键字 sbit 对单片机 IO 口进行位定义。但是 STM32 没有这样的关键字,而是通过访问位带别名区来实现。即将每个比特位膨胀成一个 32 位字,当访问这些字的时候就达到了访问比特的目的。比方说 BSRR 寄存器有 32 个位,那么可以映射到 32 个地址上,当我们去访问这 32 个地址就达到访问 32 个比特的目的。
STM32F1 中有两个区域支持位带操作,一个是 SRAM 区的最低 1MB 范围,一个是片内外设区的最低 1MB 范围(APB1、APB2、AHB 外设)。如下图所示:
从图中可知,SRAM 的最低 1MB 区域,地址范围是 0X2000 0000-0X200FFFFF。片内外设最低 1MB 区域,地址范围是 0X4000 0000-0X400F FFFF,在这个地址范围内包括了 APB1、APB2、AHB 总线上所有的外设寄存器。
在 SRAM 区中还有 32MB 空间,其地址范围是 0X2200 0000-0X23FF FFFF,它是 SRAM 的 1MB 位带区膨胀后的位带别名区,前面已经说过位带操作,要实现位操作即将每一位膨胀成一个 32 位的字,因此 SRAM 的 1MB 位带区就膨胀为 32MB的位带别名区,通过访问位带别名区就可以实现访问位带中每一位的目的。
片内外设区的 32MB 的空间也是一样的原理。 片内外设区的 32MB 地址范围是0X4200 0000-0X43FF FFFF。
通常我们使用位带操作都是在外设区,在外设区中应用比较多的也就是GPIO 外设,SRAM 区内很少使用位操作。
位带区与位带别名区地址转换
前面已经说过, 位带操作就是将位带区中的每一位膨胀成位带别名区中的一个 32 位的字,通过访问位带别名区中的字就实现了访问位带区中位的目的。因此我们就可以使用指针来访问位带别名区的地址, 从而实现访问位带区内位的目的。那么位带别名区与位带区地址是如何转换的,我们下面就来介绍下。
(1)外设位带别名区地址
对于片上外设位带区的某个比特,记它所在字节的地址为 A,位序号为 n,n值的范围是 0-7,则该比特在别名区的地址为:
AliasAddr=0x42000000+ (A-0x40000000)84 +n4
0x42000000 是外设位带别名区的起始地址,0x40000000 是外设位带区的起始地址,(A-0x40000000)表示该比特前面有多少个字节,一个字节有 8 位,所以8,一个位膨胀后是 4 个字节,所以4,n 表示该比特在 A 地址的序号,因为一个位经过膨胀后是四个字节,所以也4。
(2)SRAM 位带别名区地址
对于 SRAM 位带区的某个比特,记它所在字节的地址为 A,位序号为 n,n 值的范围是 0-7,则该比特在别名区的地址为:
AliasAddr= =0x22000000+ (A-0x20000000)84 +n4
0x22000000 是 SRAM 位带别名区的起始地址, 0x20000000 是 SRAM 位带区的起始地址,(A-0x20000000)表示该比特前面有多少个字节,一个字节有 8 位,所以8,一个位膨胀后是 4 个字节,所以4,n 表示该比特在 A 地址的序号,因为一个位经过膨胀后是四个字节,所以也4。
上面我们已经把外设位带别名区地址和 SRAM 位带别名区地址使用公式表示出来,为了操作方便,我们将这两个公式进行合并,通过一个宏来定义,并把位带地址和位序号作为这个宏定义的参数。公式如下:
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr&0xFFFFF)<<5)+(bitnum<<2))
addr & 0xF0000000 是为了区分我们操作的是 SRAM 还是外设,实际上就是获取最高位的值是 4 还是 2。如果操作的是外设,那么 addr & 0xF0000000 结果就是 0x40000000,后面+0x2000000 就等于 0X42000000,0X42000000 是外设别名区的起始地址。如果操作的是 SRAM,那么 addr & 0xF0000000 结果就是0x20000000,后面+0x2000000 就等于 0X22000000,0X22000000 是 SRAM 别名区的起始地址。
addr & 0x000FFFFF 屏蔽了高三位,相当于减去 0X20000000 或者
0X40000000,屏蔽高三位是因为 SRAM 和外设的位带区最高地址是 0X200F FFFF和 0X400F FFFF,SRAM 或者外设位带区上任意地址减去其对应的起始地址,总是低 5 位有效,所以这里屏蔽高 3 位就相当于减去了 0X20000000 或者0X40000000。<<5 相当于84, <<2 相当于*4,其作用在前面已经分析过。
最后就可以通过指针形式来操作这些位带别名区地址, 实现位带区对应位的操作。代码如下:
//把 addr 地址强制转换为 unsigned long 类型的指针
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
//把位带别名区内地址转换为指针 ,获取地址内的数据
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
这里说明下 volatile 关键字,volatile 提醒编译器它后面所定义的变量随时都有可能改变,因此编译后的程序每次需要存储或读取这个变量的时候,都会直接从变量地址中读取数据。如果没有 volatile 关键字,则编译器可能优化读取和存储,可能暂时使用寄存器中的值,如果这个变量由别的程序更新了的话,将出现不一致的现象。更详细的内容大家可以百度查找。
位带操作的优点
在 STM32 应用程序开发中虽然可以使用库函数操作外设, 但如果加上位操作就如虎添翼。想想 51 单片机内位操作的方便,就可以理解为什么要对 STM32 使用位操作。STM32 位操作优点非常多,我们这里就列举几个突出的:
(1)对于控制 GPIO 的输入和输出非常简单。
(2)操作串行接口芯片非常方便(DS1302、74HC595 等),如果采用库函数的话,那么这个时序编写就非常不方便。
(3)代码简洁,阅读方便。
GPIO位带操作
我们已经知道 STM32F1 支持的位带操作区有两个, 其中应用最多的还是外设位带区,在外设位带区中包含了 APB1、APB2 还有 AHB 总线上的所有外设寄存器,使用位带操作应用最多的外设还属 GPIO,通过位带操作控制 STM32 引脚输入与输出,因此我们就以 GPIO 中 IDR 和 ODR 这两个寄存器的位操作进行讲解。
根据《STM32F10x 中文参考手册》对应的 GPIO 寄存器章节中可以知道,IDR和 ODR 寄存器相对于 GPIO 基地址的偏移量是 8 和 12。所以可以通过宏定义实现这两个寄存器的地址映射,具体代码如下:
//IO 口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C
#define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C
#define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C
#define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C
#define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C
#define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C
#define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C
#define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08
#define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008
#define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408
#define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808
#define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08
#define GPIOG_IDR_Addr (GPIOG_BASE+8) //0x40011E08
从上述代码中可以看到有 GPIOx_BASE,这个也是一个宏,里面封装的是相应 GPIO 端口的基地址,在库函数中有定义。
获取寄存器的地址以后,就可以采用位操作的方法来操作 GPIO 的输入和输出,代码如下:
//IO 口操作,只对单一的 IO 口
//确保 n 的值小于 16
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入
#define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入
#define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入
#define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入
#define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入
#define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入
#define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入
上述代码中我们已经将 STM32F1 芯片的所有端口都进行了位定义封装, 假如要使用 PC0 管脚进行输出,那么就可以调用 PCout(n)宏,n 值即为 0。假如使用的是 PC0 管脚作为输入,那么就可以调用 PCin(n)宏,n 值即为 0。其他端口调用方法类似。
上一篇:STM32F1学习-驱动led灯(位操作版本)
下一篇:Stm32位带操作分析-浅显易懂
推荐阅读最新更新时间:2024-11-09 13:28
设计资源 培训 开发板 精华推荐
- 基于IEC61850的智能电子设备(IED)系统
- SX8638 具有增强型 LED 驱动器和接近度的低功耗电容式按钮和滑块触摸控制器(8 个传感器)的典型应用
- 用于计算机/外围设备的 1V、1.2V、1.5V、1.8V DC 至 DC 单路输出电源
- 紧凑型 PCI 和 PCI Express 系统中热插拔和电源监控的紧凑型解决方案
- 使用 Analog Devices 的 ADP1823 的参考设计
- 使用 Analog Devices 的 LTC1479IG 的参考设计
- 使用 NXP Semiconductors 的 MC07XS6517EK 的参考设计
- #第七届立创电赛#姿态显示仪
- ICE40HX1K-BLINK-EVN、iCE40HX1K 评估套件预装了电容感应触摸按钮演示设计和 USB 虚拟 I/O 演示
- LT3970EDDB-5 5V 降压转换器的典型应用
- 手印签到,共同见证 TI 中国大学计划20周年
- 勇闯泰克绝密黑科技实验室!
- 下载有好礼!罗姆带您学习电源设计应用小技巧(电源管理篇)
- 【已结束】 Qorvo & Keysight 直播【新一代无线连接的挑战与应对之道】
- 泰克WiFi预一致性测量方案介绍会 填问卷 赢好礼
- 【备战国赛】干货文集限时免积分下载,别错过哦~
- TI有奖直播|借助Sitara™ AM263x MCU 创造电气化的未来
- 选修有礼:Keysisht“测试测量”系列12节新课程,炎夏预约开启~
- DSP-Sitara精品课上线,礼品、开发板等你拿!
- 是德科技电子书 《X-Apps藏宝图: 能够加速测试的信号分析仪必备测量App》下载有好礼!