复位是单片机的初始化操作,只需给AT89S51的复位引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使AT89S51复位。
复位操作
当AT89S51进行复位时,PC初始化为OOOOH,使AT89S51单片机从程序存储器的OOOOH单元开始执行程序。除了进入系统的正常初始化之外,当程序运行出错(如程序“跑飞”)或操作错误使系统处于“死锁”状态时,也需按复位键即RST脚为高电平,使AT89S51摆脱“跑飞”或“死锁”状态而重新启动程序。
除PC之外,复位操作还对其他一些寄存器有影响,这些寄存器复位时的状态见表2-7。由表2-7可以看出,复位时,SP-07H,而4个I/O端口PO~P3的引脚均为高电平。在某些控制应用中,要注意考虑PO~P3引脚的高电平对接在这些引脚上的外部电路的影响。例如,Pl口某个引脚外接一个继电器绕组,当复位时,该引脚为高电平,继电器绕组就会有电流通过,吸合继电器开关,使开关接通,可能会引起意想不到的后果。
表2-7复位时片内各寄存器的状态
复位电路设计
AT89S51的复位是由外部的复位电路实现的。AT89S51片内复位电路结构如图2-17所示
复位引脚RST通过一个施密特触发器与复位电路相连,施密特触发器用来抑制噪声,在每个机器周期的S5P2:施密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。
复位电路通常采用上电自动复位和按钮复位两种方式。
最简单的上电自动复位电路如图2-18所示
对于CMOS型单片机,由于在RST引脚内部有一个下拉电阻,故可将电阻R去掉,而将电容C选为10 μF。
上电自动复位是通过外部复位电路给电容C充电加至RST引脚一个短的高电平信号,此信号随着VCC对电容C的充电过程而逐渐回落,即RST引脚上的高电平持续时间取决于电容C的充电时间。因此为保证系统能可靠地复位,RST引脚上的高电平必须维持足够长的时间。
除了上电复位外,有时还需要按键手动复位。按键手动复位有电平和脉冲两种方式。
按键手动电平复位是通过RST端经电阻与电源Vcc接通来实现,具体电路如图2-19所示
当时钟频率选用6 MHz时,C的典型取值为10μF,R取值为2kΩ。
脉冲复位是利用RC微分电路产生的正脉冲来实现的,脉冲复位电路如图2-20所示
图中的阻容参数适于6 MHz时钟。
图2-21所示电路能输出高、低两种电平的复位控制信号,以适应外围I/O接口芯片所要求的不同复位电平信号。图2-21中,74LS122为单稳电路。实验表明,电容C选择约为0.1μF较好
在实际应用系统设计中,若有外部扩展的I/O接口电路也需初始复位,如果它们的复位端和AT89S51的复位端相连,复位电路中的R、C参数要受到影响,这时复位电路中的R、C参数要统一考虑,以保证可靠复位。如果AT89S51与外围I/O接口电路的复位电路和复位时间不完全一致,使单片机初始化程序不能正常运行,外围I/O接口电路的复位也可以不与AT89S51复位端相连,采用独立的上电复位电路。若RC上电复位电路接施密特电路输入端,施密特电路输出接AT89S51和外围电路复位端,则能使系统可靠地同步复位。一般来说,单片机的复位速度比外围I/O接口电路快些。为保证系统可靠复位,在初始化程序中应安排一定的复位延迟时间。
关键字:AT89S51 单片机 复位操作 复位电路
引用地址:
AT89S51单片机的复位操作及复位电路设计
推荐阅读最新更新时间:2024-10-17 11:51
AT89S51单片机的复位操作及复位电路设计
复位是单片机的初始化操作,只需给AT89S51的复位引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使AT89S51复位。 复位操作 当AT89S51进行复位时,PC初始化为OOOOH,使AT89S51单片机从程序存储器的OOOOH单元开始执行程序。除了进入系统的正常初始化之外,当程序运行出错(如程序“跑飞”)或操作错误使系统处于“死锁”状态时,也需按复位键即RST脚为高电平,使AT89S51摆脱“跑飞”或“死锁”状态而重新启动程序。 除PC之外,复位操作还对其他一些寄存器有影响,这些寄存器复位时的状态见表2-7。由表2-7可以看出,复位时,SP-07H,而4个I/O端口PO~P3的引脚均为高电平。在某些
[单片机]
AT89S51的复位操作和复位电路
复位是单片机的初始化操作,只需给AT89S51的复位引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使AT89S51复位。 复位操作 当AT89S51进行复位时,PC初始化为OOOOH,使AT89S51单片机从程序存储器的OOOOH单元开始执行程序。除了进入系统的正常初始化之外,当程序运行出错(如程序“跑飞”)或操作错误使系统处于“死锁”状态时,也需按复位键即RST脚为高电平,使AT89S51摆脱“跑飞”或“死锁”状态而重新启动程序。 除PC之外,复位操作还对其他一些寄存器有影响,这些寄存器复位时的状态见表2-7。由表2-7可以看出,复位时,SP-07H,而4个I/O端口PO~P
[单片机]
复位电路异同及操作
第一部分 复位分类 硬件复位:顾名思义通过硬件给系统一个复位,比如在电路板上设计一复位电路,通 过按下按键就可以给系统实现一个复位,而无论系统在执行什么样的程序 复位启动以后需要重新加载加载FPGA、DSP等,也有可能在这个操作之前初始化化CPU,加载系统文件等操作,具体视需要而定,然后初始化一些配置芯片。 硬件复位的作用区域一般是全局的。 软件复位:是通过软件给系统一个复位信号,如低电平或许是高电平(具体看系统设置)来实现复位操作 复位启动不需要进行FPGA、DSP等的加载,只是一些配置芯片的初始化 软件复位一般是一些块结构。 上电复位:系统在上电的瞬间就执行复位操作, 上电复位里面包括硬件复位和软
[单片机]
简述单片机的几种复位电路
在单片机的使用中,经常会接触到复位电路,它是单片机最小系统重要的一个构成部分。同样它也是非常重要的一部分。 复位就是让单片机从初始化状态开始重新运行,即程序从头开始执行。复位电路设计的好坏,直接影响整个系统是否稳定可靠。复位电路与单片机的RESET/NRST引脚相连,拿STM32系列单片机举例,当系统正常工作时,如果RESET引脚电压低于某一阈值,则单片机进入复位状态。单片机的复位可分为低电平复位和高电平复位,这是由厂家决定的,区分的方式可以看数据手册,手册中的复位章节会写清楚是什么电平复位。单片机的复位可以分为:上电复位、掉电复位、软件复位、外部手动复位等。 上电复位:单片机每次上电都会给RESET脚一个复位信号,让单片
[单片机]
解析单片机的几种复位电路
在单片机的使用中,经常会接触到复位电路,它是单片机最小系统重要的一个构成部分。同样它也是非常重要的一部分。 复位就是让单片机从初始化状态开始重新运行,即程序从头开始执行。复位电路设计的好坏,直接影响整个系统是否稳定可靠。复位电路与单片机的RESET/NRST引脚相连,拿STM32系列单片机举例,当系统正常工作时,如果RESET引脚电压低于某一阈值,则单片机进入复位状态。单片机的复位可分为低电平复位和高电平复位,这是由厂家决定的,区分的方式可以看数据手册,手册中的复位章节会写清楚是什么电平复位。单片机的复位可以分为:上电复位、掉电复位、软件复位、外部手动复位等。 上电复位:单片机每次上电都会给RESET脚一个复位信号,让单片
[单片机]
详解80C51单片机的复位电路和时钟电路
复位电路 在80C51中,最常见的复位电路就是下图的上电复位电路。 它能有效地实现上电复位和手动复位。RST引脚高电平有效。 其有效时间应持续24个振荡周期以上才能完成复位操作。若使用6MHz晶振,则需持续4us以上才能完成复位操作。 在通电瞬间,由于RC电路的充电过程,在RST端出现一定宽度的正脉冲,只要正脉冲保持10mS以上,就能使单片机自动复位。 CPU在第二个及其周期内执行内部复位操作,以后每个机器周期重复一次,直至RST端电平变低。 在单片机复位器件,ALE和~PSEN信号都不产生。复位操作将对部分专用寄存器产生影响,复位后,这些内部寄存器的状态发生变化,如下表。 时钟电路 在80C51单片机内有一个高增益的反
[单片机]
51单片机复位电路原理是什么?为什么为复位?
51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 开机的时候为什么为复位 在电路图中,电容的的大小是10uf,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在
[单片机]
89c51单片机的复位电路,89c51复位电路图详解
复位电路的目的就是在上电的瞬间提供一个与正常工作状态下相反的电平。一般利用电容电压不能突变的原理,将电容与电阻串联,上电时刻,电容没有充电,两端电压为零,此时,提供复位脉冲,电源不断的给电容充电,直至电容两端电压为电源电压,电路进入正常工作状态。 这篇文章我们就一起来了解一下关于89C51单片机的复位电路方面的消息,希望可以给你带来惊喜。 89c51复位电路图详解 复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。 图1所示的RC复位电路可以实现上述基本功能,图
[单片机]