基于ADN2817的光信号速率自动识别系统电路设计

最新更新时间:2008-06-26来源: 中电网关键字:速率  光信号  电平转换  限幅放大器  电源滤波  LFCSP  NRZ  电路设计  信号放大 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  随着通信网络的发展,光通信业务应用广泛。承载业务速率的准确判别是电路设计中器件选取及网络链路连接和建立的重要依据。随着信号数据速率的急剧增加,要求高速信号的获取精度越来越高,这就需要一种简单、准确的识别方法。该设计以ADN2817作为核心器件。恢复已探测信号,并判决信息的采取,采用单片机读取判决信息计算并输识别结果。

  2 ADN2817简介

  ADN2817是ADI公司生产的一款可将数据速率从12.3 Mb/s~2.7 Gb/s的NRZ数据流中进行恢复的时钟恢复和数据重定时反向不归零器件,可用于光网络应用中时钟和数据恢复(CDR),是ADI公司引脚兼容、连续可调速率CDR系列扩展的低功耗产品,广泛应用于SONET OC-1/OC-3/OC-12、以太网、DTV以及WDM异频雷达收发机,并适用于固定速率、多速率和连续调节速率的数据通信和电信应用。ADN2817的光灵敏度比前一代的CDR产品提高1.5 dB;支持2-Wire、I2C外围通信;串/并转换器支持8位并行接口到FPGA或数字ASIC;可提供一半的时钟速率的双倍数据速率(DDR),用于识别输入信号数据速率的回读数据速率。

  ADN2817还具有以下特点:+3.3 V单电源;功耗低,为650 mW;可编程的LOS监测;锁相环失败告警;工作温度范围-40℃~+85℃;储存温度范围-65℃~+150℃:小型5 mm×5 mm 32引脚LFCSP芯片级封装。

  3 系统设计

  3.1 系统框图

  系统硬件设计主要由光信号探测器、信号放大器、时钟和数据恢复电路(CDR)、外围控制电路4部分构成。系统框图如图1所示,其中光信号探测器和信号放大器分别完成信号的光电转化和信号放大,供CDR做数据源;以ADN2817为核心的CDR电路完成对时钟、数据的恢复和时钟速率的判别;外围控制电路通过对ADN2817的读写和相应运算获得信号速率。

  输入光信号经过PIN管接收、O/E转换后,先经预放实现信号放大,一般输出PECL电平,再通过PECL-CML电平转换后,信号输入至ADN2817。参考时钟的精度要求在100 ppm以内。

  3.2 接口匹配电路

  由于ADN2817的输入电平是CML电平,而经预放的电平是PECL电平,因此,接口之间需要电平转换,阻抗匹配尤为重要,如图2所示。

  

  3.3 时钟数据恢复电路

  ADN2817的应用电路如图3所示,其中,外围电路包括电源滤波、告警门限调节、环路滤波电容。外同电路简单,无须过多调节。限幅放大器内部集成功率检测器,LOS输出用于指示输入功率是否跌落到监测门限以下。若检测到低于监测门限,则系统指示无光告警。RTH变阻器可调整信号无光告警的监测范围。CF1和CF2引脚间的滤波电容,要求其容量不能超出0.417μF±20%,且绝缘电阻应大于300 MΩ。ADN2817的内部参数通过外接微处理器,经I2C控制口进行配置,输人数据、输出数据、输出时钟的线路阻抗为50 Ω。另外,ADN2817的背面中心有裸露焊盘供散热使用,电路板布局时可作热焊盘,由过孔接地。

  

  4 系统软件设计

  4.1 内存地址分配

  ADN2817内置两个8位受控地址用于读、写操作。其地址分配方式及初始化值如图4所示,读、写命令字节设置如图5、图6所示。

  4.2 数据读取及计算方法

  当外部单片机控制ADN2817内存时,首先单片机发送一个通信建立信号,指示后面为数据串。ADN2817以MSB到LSB的顺序向单片机输出数据。单片机接收并判断数据是否传送完毕。数据传送结束后,ADN2817复位等待接收后续命令。

  计算信号的速率:

  其中,FREQ[22:0]由FREQ2[6:0](MSB),FREQ1[7:0],FREQ0[7:0](LSB)构成;

  fDATARATE是信号速率(b/s);fREFCLK是REFCLK(参考时钟)频率(Hz);SEL_RATE是由CTRLA[7:6]设置,其值根据REFCLK由用户设定。

  4.3 程序设计流程图

  目前单片机C语言开发比较流行,因此建议使用C语言开发单片机程序。图7为信号速率判别程序流程图。

  

  5 结束语

  基于ADN2817的光信号速率自动识别系统精度高、稳定可靠,实现小型化、携带方便,且功耗低,成本小,稳定性高,抗干扰能力强。

关键字:速率  光信号  电平转换  限幅放大器  电源滤波  LFCSP  NRZ  电路设计  信号放大 编辑:孙树宾 引用地址:基于ADN2817的光信号速率自动识别系统电路设计

上一篇:基于AVR单片机的通用USB接口模块设计
下一篇:基于CP2102的RS232转USB接口的应用设计

推荐阅读最新更新时间:2023-10-12 20:13

2×8低噪声InGaAs/InP APD读出电路设计
   0 引言   在红外通信的1 310~1 550 nm波段,高灵敏度探测材料主要有Ge—APD和InGaAs/InP APD,两者相比较,InGaAs/InP APD具有更高的量子效率和更低的暗电流噪声。In0.53Ga0.47As/InP APD采用在n+-InP衬底上依次匹配外延InP缓冲层、InGaAs吸收层、InGaAsP能隙渐变层、InP电荷层与InP顶层的结构。   APD探测器的最大缺点是暗电流相对于信号增益较大,所以设计APD读出电路的关键是放大输出弱电流信号,限制噪声信号,提高信噪比。选择CTIA作为读出单元,CTIA是采用运算放大器 作为积分器的运放积分模式,比较其他的读出电路,优点是噪声低、
[模拟电子]
实时语音识别系统在家庭监护机器人电路设计
  文中所研究和设计的功能,都是应用在移动机器人上的。因而系统的研究设计需要考虑到体积小、省电、便于移动的特性,并需具有便于家庭用户操作的友好显示界面。对于语音识别部分,需要用到用于语音识别算法处理的处理器、语音采集电路和语音输出电路。其中语音识别算法运算的处理器主要负责算法的运算处理,相当于机器人的大脑;语音采集电路负责采集外部的声音信号,相当于机器人的耳朵;语音输出电路负责输出话语声音,相当于机器人的嘴巴。   本文的设计是用在移动机器人上的,因而需要语音的输入、识别处理及语音输出的功能。对于语音的输入采集,本文使用声音传感器麦克风及外围电路来实现。对于语音输出部分,使用功率放大器结合喇叭来使用。设计语音部分原理图如图3所示。
[电源管理]
实时语音识别系统在家庭监护机器人<font color='red'>电路设计</font>
EMC设计元器件选择及电路设计很关键
在PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;在产品的EMC设计中,除了元器件的选择和电路设计之外,良好的PCB设计也是一个非常重要的因素。 PCB的EMC设计的关键,是尽可能减小回流面积,让回流路径按照我们设计的方向流动。而层的设计是PCB的基础,如何做好PCB层设计才能让PCB的EMC效果最优呢? 1 PCB层的设计思路: PCB叠层EMC规划与设计思路的核心就是合理规划信号回流路径,尽可能减小信号从单板镜像层的回流面积,使得磁通对消或最小化。 1、单板镜像层 镜像层是PCB内部临近信号层的一层完整的敷铜平面层(电源层、接地层)。主要有以下作用: (1
[网络通信]
光电式探丝传感器电路设计
摘要:本文介绍了一种用于化纤生产中探测丝线运动的光电式探丝式传感器的特点、设计原理及电路实现。 关键词:光电探丝传感器;红外脉冲 一、前言 探丝传感器是化纤牵伸设备中必不可少的断丝检测装置。传统的探丝传感器大多采用电荷感应式,其 检测灵敏度高,但受环境温度及湿度的影响较大,从而影响其可靠性和准确性。光电式探丝传感器可以弥补以上检测方法的不足,从而大大提高了断丝检测的准确性和可靠性。 二、光电式探丝传感器的原理 光电式探丝传感器能对纺织机械纺的纤维进行非接触断丝检测,并能配合切丝器及时切断断丝,以防止纤维缠绕机器部件。 光电式探丝传感器利用红外光电原理对纤维的运动状态进行检测,当纤维正常时
[传感技术]
一款基于整流管尖峰吸收电路设计
最近在网上看到很多人都在讨论Flyback的次级侧整流二极管的RC 尖峰吸收 问题,觉得大家在处理此类尖峰问题上仍过于传统,其实此处用RCD吸收会比用RC吸收效果更好,用RCD吸收,其 整流管 尖峰电压可以压得更低(合理的参数搭配,可以完全吸收,几乎看不到尖峰电压),而且吸收损耗也更小。 PK 整流二极管电压波形(RC吸收) 整流二极管电压波形(RCD吸收) 从这两张仿真图看来,其吸收效果相当,如不考虑二极管开通时高压降,可以认为吸收已经完全。 此处的RCD吸收设计,可以这样认为:为了吸收振荡尖峰,C应该有足够的容值,已便在吸收尖峰能量后,电容上的电压不会太高,为了平衡电容上的能量,电阻R需将存储在电
[电源管理]
一款基于整流管尖峰吸收<font color='red'>电路设计</font>
基于三极管的单片机io电平转换电路
三极管io电平转换电路图 在单片机的应用中有的时候,两个器件通讯,但电压不同,这时候,就需要电平转换,上图即为单向io电平转换,由两个npn三极管组成,看别人的图,三极管使用的是 3906,我试验的时候使用的是8050,开始的时候感觉没啥区别,但测试的时候,发现,两个电平有延迟,在1微妙左右,频率才3k左右。网上查了一下,8050的速度是150M,而3906的速度是300M,所以还是建议使用频率高的。对于电阻,基极使用的是1k,而集电极使用的是4.7k。我看别人用的是22k和47k。具体的区别可能还有待测试。
[单片机]
基于三极管的单片机io<font color='red'>电平转换</font>电路
基于AMBE-2000的多速率语音通信终端模块
摘要:介绍一种基于AMBE-2000和DSP芯片的语音通信终端模块的原理与实现方案。该终端模块具有设计简便、语音编码速率可变、音质优、性价比高、功耗小等诸多优点,可广泛应用于卫星通信、短波、微波通信和军用保密通信等场合。 关键词:声码器 AMBE 前向纠错编码(FEC) AMBE-2000是DVSI(Digital Voice System Inc.)公司推出的单片声码器芯片。该芯片采用改进的多带激励(MBE)算法,能实现可变速率低比特率、高语音音质的语音压缩编码。本文基于AMBE-2000,设计并实现了一种语音通信终端模块。该模块具有设计简便、语音编码速率可变、音质优、接口灵活、工作电压低、功耗小等诸多优点,可广泛应用于卫星
[应用]
解析三相PWM逆变器的主电源电路设计
随着电力电子技术的发展,  逆变器 的应用已深入到各个领域, 一般均要求 逆变器 具有高质量的输出波形。 逆变器 输出波形质量主要包括两个方面, 即稳态精度和动态性能。因此, 研究既具有结构和控制简单, 又具有优良动、静态性能的逆变器控制方案, 一直是电力电子领域研究的热点问题。   随着国民经济的高速发展和国内外能源供应的紧张, 电能的开发和利用显得更为重要。目前, 国内外都在大力开发新能源, 如太阳能发电、风力发电、潮汐发电等。一般情况下, 这些新型发电装置输出不稳定的直流电, 不能直接提供给需要交流电的用户使用。为此, 需要将直流电变换成交流电, 需要时可并入市电电网。这种DC- AC 变换需要逆变技术来完成。因此, 逆变技
[电源管理]
解析三相PWM逆变器的主电源<font color='red'>电路设计</font>
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved