超声层析成像检测系统的研究与实现

发布者:DreamyEclipse最新更新时间:2009-12-09 来源: 电子设计工程关键字:层析成像  DSP  超声CT 手机看文章 扫描二维码
随时随地手机看文章

1 引言

    层析成像CT(Computed Tomography)是指通过物体外部检测到的数据来重建物体内部(横截面)信息的技术,又称为计算机辅助断层成像技术。它是把不可分割的对象假想切成一系列薄片,分别给出每一薄片上的物体图像,然后再把该系列图像叠加起来,从而得到物体内部图像。它是一种由数据到图像的重建技术,通过伪彩色图像反映被测材料或制件内部质量,定性、定量分析其缺陷,从而提高检测的可靠性。层析成像技术创新了探测物质内部结构。该技术可应用于多种能量波和粒子束,如X射线、电子质子、超声波等。

    CT应用超声波能量称为超声层析成像U-CT(Ultrasonic-Computed Tomography)。早期研究假设超声波在物体内部以直线传播,利用发射器到接收器之间的时间延迟或振幅衰减,重建物体内部的声速、吸收特性等参数。但实际超声波具有明显的衍射特征,在界面上具有显著的折射、衍射,因而传播路径复杂,这使得U-CT的理论研究和X射线层析成像(X-CT)有所不同。获得更清晰的图像检测效果则成为首要问题,因此,这里提出一种超声层析成像检测系统的设计。

2 超声CT阵列检测方法

    针对超声层析成像检测中数据提取较困难的特点,为提高精度,在深入研究超声场的特点,结合数字化技术,这里并未采用目前主流的依次排列的一线式布置方法,而是采用环绕式阵列检测方法,如图1所示。

    根据试件形状,将探头阵列按照一定次序捆绑在试件周围,其原则是应均匀布置,这样有利于数据处理过程中网格的划分和射线追踪。在脉冲信号的控制下,当其中一个作为发射探头时,其余探头作为接收探头,各个探头依次发射超声波信号。探头的个数由所测试件的大小、测量精度、网格划分情况等因素决定。采取该布置方法的优点:可实现任意形状试件的检测,具有良好的通用性;获得较精确的检测信息。

3 基于DSP的超声CT成像系统的总体设计

    该系统由超声发射接收电路、信号采集、控制电路、信号处理与显示部分组成,如图2所示。整个超声CT成像检测系统由数据(声时)采集、数据处理,以及图像处理显示3部分构成。所需设备和元件包括:若干超声发射探头和接收探头;由单片机组成的脉冲控制电路;2个读写存储器RAM;2个由DSP组成的数字信号处理电路(分别内置射线追踪程序和反演迭代程序),及DSP驱动的显示阵列LCD。

    超声发射装置是由脉冲控制电路以一定周期发射超声波,接收探头接收信号后,通过高精度计时器得到最小走时矩阵,并存储于存储器1,从而完成数据采集;由存储器1中的最小走时矩阵初步建立(假定超声直线传播)介质内部的慢度矩阵,南慢度矩阵按照射线追踪得到走时路径,存储于存储器2,按照存储器1,2中的信息,经DSP处理,完成方程求解,得到最终精确的慢度矩阵,完成该系统的核心功能一数据处理;重建的慢度矩阵转化为灰度值,由DSP控制LCD显示阵列。最后由工程技术人员对照标准的无缺陷的介质,分析试件,确定有无缺陷,缺陷的位置,大小以及严重情况。

4 图像重建算法

    实现超声层析成像有正演和反演两个基本过程。正演是反演的基础,其模型选取与求解精度直接影响反演变精度;而反演过程实际是对问题的最优化过程。反演方法一般分为变换重建法和级数展开法两大类。由于级数展开法通过离散重建区域,降低原有问题的非线性,适合投影数据不够精确、不能完全且以射线为曲线的层析成像。根据反演的理论基础,层析成像分为以射线理论为基础的射线层析和以波动理论为基础的波动层析。目前CT技术从直射层析成像向弯曲射线层析成像发展。反演方法由最小二乘法发展到各种约束条件下的加权阻尼最小二乘法以及统计法,如最大熵法。观测参数由单一走时数据向多参数数据发展。反演方法则从线性(代数重建法、联合跌代重建法等方法)向非线性(梯队法、模糊神经网络算法和遗传算法等方法)方向发展。射线追踪是确定波从激发点传至接收点的射线路径及其走时的主要技术。因为层析面上各点的波速不相等,波传播的路径是一个与材料不均匀性相关的曲线,其真实路径未知,所以可采用射线追踪理论求取其真实路径。而射线追踪算法分为向前处理与向后处理两部分。

    (1)向前处理先计算离散网格模型上所有边界点的最小走时,然后计算发射点单元所在列各单元边界上所有离散点的最小走时。并记录对应的次级源,接着对发射点单元所在行各单元边界上所有点的计算与第二步相同。在求出每网格内局部走时的基础上,对发射源发出的射线在整个模型上的走时相加便得到全局最小走时。

    (2)向后处理根据向前处理中得到的各单元边界上所有计算点的最小走时及相应次级源,追踪所有发射点到接收点间具有最小走时的射线路径。首先求出接收点所在单元边界上走时最小的离散点,以走时最小的离散点为新的接收点,重复上一步骤向前推,直到发射点所在单元为止。将发射点与最后的射线交点相连。即完成全部向后处理。

5 层析结果

    图4为假设模型的网格分布图,其背景区域的速度为v0=4.000 m/s,异常区(即黑色区域)速度为v1=3 000 m/s。探头布置采用环绕方式,利用线性插值射线追踪算法和联合迭代重建算法得到速度层析图像,结果如图5所示,从图5中可清晰发现低速区。因此,解决了图像检测中图像清晰度不高的困扰。此设计方案可运用到各种需要利用超声波图像检测的领域。

6 结论

    本文所采用的阵列检测方法,在射线追踪算法和SIRT重建方法的基础上,所提取的走时数和超声波数目大大增加,这样在相同的迭代次数条件下,得到结果更精确,重建图像结果更清晰准确。

关键字:层析成像  DSP  超声CT 引用地址:超声层析成像检测系统的研究与实现

上一篇:赛灵思推出Virtex-6/Spartan-6 FPGA连接开发套件
下一篇:基于MATLAB的车牌识别系统的研究

推荐阅读最新更新时间:2024-05-02 20:56

基于VxWorks的多DSP系统的多任务程序设计
摘要:多DSP信号处理板广泛地运用于工业、军事、通信和医疗等许多方面。本文介绍一种基于VxWorks实时操作系统的ADSP21160的多DSP板设计,以及该板在数字式声纳的实时信号处理系统中的应用,并介绍在VxWorks实时操作系统下的软件算法仿真和实现。 关键词:多DSP阵列 声纳系统 VxWorks 近年来,计算机产品的应用领域越来越广,数字信号处理器的发展表现得尤为明显。DSP芯片制造商和DSP板开发商利用自身的优势不断开发出多DSP结构的产品来满足这种需求。通常的DSP设备是与嵌入式系统相结合,来实时地完成某一特定任务。随着信号采集速度和处理速度的要求越来越高,许多领域都需要进行多处理器运算,其中包括医学、图像处
[应用]
基于DSP+MCU的列车滚动轴承故障诊断系统设计与应用
  滚动轴承是列车转动机件的支撑,也是铁路车辆上最容易危及行车安全的易损件。由于工作面接触应力的长期反复作用,极易引起轴承疲劳、裂纹、压痕等故障,导致轴承断裂,造成重大事故。轴承工作状态是否正常,对于列车的安全有着重大的影响。因此,开展列车滚动轴承故障诊断的研究对避免重大事故、促进经济发展具有相当大的意义。   1 系统总体设计   1.1 硬件系统   振动控制系统是一个典型的实时信号处理系统,需要对较复杂的信号进行处理。考虑到单片机的控制功能强,其总线位数少,运行速度相对较慢;而DSP(Digital Signal Processor)的运算能力强,总线宽度宽,控制功能相对较弱。为了提高系统的信号处理速度,便于对系统的
[单片机]
基于<font color='red'>DSP</font>+MCU的列车滚动轴承故障诊断系统设计与应用
基于DSP的液晶显示通用控制器设计
引言 电力电子装置在调试和研发的过程中,需要经常性地改动相关的控制参数,同时需要实时监测装置运行过程中的各关键点处的电量波形。现在的电力电子装置,其控制板的主控芯片通常采用 DSP(数字信号处理器),由于其硬件条件的限制,进行控制参数(如 PID的各控制系数)的修改时,往往需要不断地更改和烧写程序,很难实时地在线进行参数修改,同时也很难向装置发送复杂的控制指令;另外,现在装置的调试过程中,在需要监测相关点处的电量波形时,往往采用多通道隔离示波器进行。这一方面大大增加了装置的研发成本,同时由于示波器的通道数有限,不能随时增加和变更所监测的波形点,另外示波器的探头受到电磁兼容性的制约,长度有限,调试时使用起来也造成了很多不便。 笔者
[工业控制]
基于<font color='red'>DSP</font>的液晶显示通用控制器设计
单片DSP实现马达控制和PFC
现在DSP(数字信号处理器)已从80年代几百美元降到3美元,而性能更加强大,集成有各种复杂的外设。使设计人员可用单片DSP实现马达控制。 DSP控制器概述 实现先进的马达驱动系统要求马达控制器提供如下性能:具有产生多路高频,高分辨率脉宽调制(PWM)波形的能力;实现需要最小转矩、在线参量和适应及提供精密速度控制的先进算法的快速处理;具有从同一控制器提供马达控制、功率因数校正(PFC)和通信装置的能力,能过降低元件数、简单板布局和容易制造使尽可能简单地实现完整方案;允许用改变软件代替重新设计一个独立平台,实现将来产品改进的灵活方案。 新型DSP是针对这些问题设计的。这些控制器具有DSP芯片的计算能力,片上还集成了有用的外
[应用]
基于DSP56F805的便携式多功能超声波检测系统
引言   无损检测在工程领域应用越来越广,超声波检测是无损检测的主要方法之一,主要应用在测距、探伤、测厚等领域。超声波具有方向性集中、振幅小、加速度大等特点,可产生较大能量,并且在不同的媒质介面,超声波的大部分能量会反射。利用该特性,可以实现超声测距和超声探伤。超声波检测具有灵敏度高、穿透力强、检验速度快、方便、对人体无损害和易于做到实时控制等优点。 图1 系统框图 系统框图及电路分析 系统框图如图1所示。 超声波发射电路   信号发射部分包括发射电路和探头。探头由超声波换能器组成,可以是收发同体的换能器,也可以是发射和接收分开的。本电路采用的是收发分开的探头,这样可以减少发射余震信号的影响,即可减小盲区。针对测距和探伤对
[应用]
基于多DSP互联技术的频谱监测仪研究
  随着微波技术的广泛发展,空间和地面电磁环境越来越复杂,无线电频谱资源作为公共资源的一种,需要频谱管理部门进行有效的分配和监控。设计了一种频谱监测分析仪,提出了系统的硬件方案与软件方案,研究了几种主要技术,经仿真,该频谱监测系统具有高分辨率、高速度搜索、高速存储及处理的特点,应用前景广泛。 0 引言 随着微波技术的广泛发展,空间和地面电磁环境越来越复杂,无线电频谱资源作为公共资源的一种,需要频谱管理部门进行有效的分配和监控。特别是在频带日益拥挤、自然和人为干扰日益增大的情况下,频谱监测系统有必要进行监测,检测存在的干扰,以便采取措施将影响降至最低,确保频谱资源得到合理的利用。 电磁频谱监测分析仪是应对当前电磁信号频谱检测挑战
[嵌入式]
DSP与智能彩色液晶显示器接口设计
摘要:文中提出了一种基于DSP控制的智能彩色液晶显示器的接口设计方案。介绍了智能彩色液晶显示器VK63的原理与使用方法,讨论了TMS320F24O核心DSP控制器与智能彩色液晶显示器的串、并行两种通讯的软、硬件设计方案通过软件编程解决了高速DSP与低速外部设备之间的通信问题。 关键词:DSP;LCD;串行;并行;通讯;VK63 近年来,随着低价格、高性能DSP芯片的出现,DSP已越来越多地被应用于高速信号采集、语音处理、图像分析处理等领域中,并显示出巨大的优越性。智能彩色液晶显示器具有显示直接美观、便于操作的特点,被用作各种便携式系统的显示前端。它一般采用工业级的高频CPU可以自行对接收的命令和数据进行处理因而能够提高用
[应用]
基于DSP的低功耗接收机单边带解调方法
1 数字前端 该低功耗数字接收机主要是针对语音信号的,要处理的信号都是窄带的。对数字前端中的混频器送出的模拟窄带中频信号进行采样,产生数字窄带中频信号。对该信号进行解调之前,先将频谱搬至零中频处,再进行滤波,降采样率等处理,如图1所示。 图1中A/D表示模数转换器,LPF表示低通滤波器,fs表示采样率,fo表示最靠近零频处镜像的中频。其中LPF实现如图2所示的功能。设滤出的复数信号采样率降为fs=fs/M。 图2中,细线表示上边带(USB),粗线表示下边带(LSB)。 说明一点,在实际中,上下边带的位置关系要根据模拟信号的中频及采样率fs才能确定,这里为了方便解释,就认为LSB在左,USB在右
[嵌入式]
基于<font color='red'>DSP</font>的低功耗接收机单边带解调方法
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved