如何提高数字电位器的带宽

最新更新时间:2010-07-09来源: 元器件网 关键字:带宽  数字电位器 手机看文章 扫描二维码
随时随地手机看文章

  数字电位器可广泛用于控制或调整电路参数。由于数字电位器本身带宽的限制.只能用于直流或低频应用。其典型一3 dB带宽在100 kHz至几MHz内,具体数值与型号有关。然而,通过采用下面介绍的简单方法,可以将电位器的信号带宽从10倍提高到100倍,可以获得4 MHz的O.1 dB带宽以及25 MHz以上的一3 dB带宽。这样可使数字电位器用于视频或其他高速应用领域。

  2 有限的调整范围

  在许多应用中,数字电位器用于信号微调,而无需从0%到100%的满量程调整,例如:一次性工厂校准等。在这些应用中,数字电位器一般提供10%以下的调整范围。正是借助这一有限的调整范围来提高数字电位器的带宽。 

  3 典型应用电路

  图1为电位器典型的电路配置,图中,数字电位器用于改变信号的衰减量。R2为数字电位器,Cwiper为寄生电容,该电容是所有数字电位器固有的,它限制电路带宽。当电位器在0至满量程之间摆动时,R1和R3用于限制数字电位器引起的信号衰减。

电位器典型的电路配置

  需要说明的是:由于该电路采用运算放大器,可用于信号放大和衰减。因此,以下介绍的提高带宽的方法与所选电路拓扑无关。为计算电路的传输函数(VOUT/VIN),可使用不同模式的电位器,见图2。图中,R2被分为R2top和R2bottom,其中,R2top是电位器触点以上的电阻,R2bottom是电位器触点以下的电阻。假设使用的电位器具有10 kΩ的端到端电阻(忽略触点电阻的影响),R2top和R2bottom是相对于数字编码的理想传输函数,如图3所示。传输函数的两个端点和中点:当电位器编码为0时,R2top=10 kΩ,R2bpttom=0kΩ;而当电位器编码处于中间位置时,则R2top=R2bottom=5 kΩ;当电位器编码处于满标位置时,R2top=0 kΩ,R2bottom=10 kΩ。

数字电位器

电位器理想传输函数

  由图2得出VOUT/VIN的直流传输函数:VOUT/VIN=(R3+R2bottom)/(R1+R2+R3)    (1)

  式中:R2=R2top+R2bottom

  假设R2=10 kΩ(常用数字电位器电阻值),如果希望把输入信号衰减到任意电平,例如,输入值的70%±5%(输入值的65%~75%)。然后,运用相关运算,调整范围为65%~75%,标称值f中间位置)为70%:R1=24.9 kΩ且R3=64.9 kΩ。

  4 典型应用电路的带宽

  利用式(1)中的R1和R3电阻值,假设Cwiper=10pF,获得表l所列的带宽。实际触点电容在3~80 pF内,并与触点电阻、步长数、采用的IC工艺及电位器体系结构等有关。3~5 V供电、32至256步长的10 kΩ电位器的典型电容值为3~10 DF。

  *注意,带宽与触点电容成反比。采用3 pF Cwiper,带宽频率将提高3.3倍对于视频等应用,这些带宽还是过低。 

  需要注意的是,这里分析基于的假设是:触点电容与电位器电阻并联,由此限制电位器的带宽。该方法是最直接的电位器使用方式,如果采用更复杂的电位器配置,可能会进一步限制带宽。因此,讨论提高带宽非常有必要,即使实际带宽未达到预期目的。

  5 提高电路带宽

  提高电路带宽最明显方法是选择较低阻值的数字电位器,例如,1 kΩ电位器,按比例调整R1和R2(1 kΩ电位器与10kΩ电位器相比,阻值减小10倍)。然而,低阻值数字电位器(1 kΩ)一般占用较大的裸片面积,意味着较高成本和较大封装尺寸,出于这一原因,1 kΩ电位器的实际应用非常有限。如果某一电位器能够满足设计要求,10kΩ电位器的带宽会随着电阻的减小而线性提高,例如,提高10倍(假设杂散触点电容无变化);或使用1 kQ电位器,设置Rl=2.49 kΩ,R3=6.49kΩ,触点电容为10 pF,电位器设在中间位置,可获得1.15MHz的—0.1 dB带宽,及7.6MHz的-3dB带宽。这比表l中的带宽提高10倍。 

  6 使用10 kΩ电位器,改变电路拓扑

  与1kΩ电位器相比,选择5kΩ和10 kΩ电位器可能是更好的解决方案,可以获得更小封装的电位器,从中选择易失或非易失存储器,也有更多的数字接口(up/down、I2C、SPITM)以及调整步长(32、64、128、256等)可供选择。出于这一原因,设计实例选用10 kΩ端到端电阻的电位器。假设成本、体积、接口以及电位器调整步长等因素的限制,需使用10 kΩ端到端电阻电位器,这种情况下提高典型应用电路的带宽的方法是去掉电阻R1和R3,使用步长数多于该电路要求的电位器。例如,32步长电位器获得10%的调整范围,按照上述介绍,可以选择替换这一步长的电位器,而使用256步长电位器,去掉R4和R6,限制电位器的调整范围在达到要求衰减的编码65%~75%内。所使用的编码是从0.65×256 (使用166)到编码0.75×256(192)。该实例使用一个256步长的电位器;由于有限的编码将可用步长数限制在26,即10%的调整范围,仅用了256步长的10%。

  与32步长电位器相比,该方法的缺点是256步长电位器成本较高,故可选用封装尺寸较大的电位器。假设Cwiper为30 pF,VOUT/VIN=0.70,处于调整范围的中点,图4电路中有384 kHz的-0.1 dB带宽,879 kHz的-0.5 dB带宽,2.52 MHz的一3dB带宽。与表1相比,其带宽提高3倍。另一种成本更低、性能更好的方案是在图图5最初电路使用两只并联电阻(R4和l电路中加入分立电 R5),与图l和图2相比带宽增大100倍阻,如图5所示。

使用10 kΩ电位器,改变电路拓扑

  7 使用并联电阻降低电路阻抗

  电路中增加并联电阻(注意,使用图2中引入的数字电位器模型)。降低电路阻抗(提高带宽),通过设置电路增益,限制由数字电位器在0编码到满标编码之间摆动时导致的衰减,可以达到双重目的。

  设置电位器电路增益,使用并联器件限制其调整范围(R4和R5,而不是简单串联R1、R2和R3),其电路带宽优于图1带宽。还需要注意,电阻R1、R2和R3还会影响电路增益,但由于其串联电阻要比R4和R5大得多,这种影响非常小。可以通过简单示例来说明R4和R5对图5电路的影响。在图6(a)中,电路上部电阻采用了图中方程给出的电阻组合值。注意,由于R4是与R1和R2top并联,它降低了电路阻抗。

  在图6(b)中,电路下部电阻采用了图中方程给出的电阻组合值。注意,由于R5是与R3和R2bottom并联,降低了电路阻抗。正是较低的电路阻抗使得带宽大大提高,达到设计目标的要求。图7结合了图6中的简化示例,给出了VOUT/VIN传输函数。从该图中可以清楚看到,通过降低电路阻抗(R2top小于R1+R2top,R2bottom小于R2bottom+R3),提高了电路带宽。

简化电路

  8 实际值

  实际设置R1、R3、R4和R5的阻值,可以对比图l电路的带宽,从而确定R4和R5对电路性能的影响。使用图6(b)中的方程,得出R1、R3、R4和R5的阻值,然后计算最终带宽。使用表格,可以找到满足图6(b)中方程的元件值:R1=3.48 kΩ、R2=10 kΩ、R3=4.53 kΩ、R4=l kΩ、R5=2.8 kΩ。采用这些元件值得出了表2所列的带宽。注意,这些结果要比图1电路提高100倍。

图5电路的带宽

  *注意,带宽与触点电容成反比。例如,采用3 pF Cwiper,带宽提高3.3倍。

  9 结语

  介绍了在窄带数字电位器中简单加入并联电阻以提高系统带宽的方法,显著提高系统性能(带宽可提高100倍)。设计前提是假设实际应用允许降低电位器的控制范围,以提高带宽。带宽提高后,数字电位器可用于以前无法涉及的高频领域,例如视频信号链路控制等。

关键字:带宽  数字电位器 编辑:金海 引用地址:如何提高数字电位器的带宽

上一篇:基于三轴加速度计的倾斜角传感器的研究与设计
下一篇:基于nRF24L01的电缆在线监测系统终端的研究

推荐阅读最新更新时间:2023-10-12 20:17

示波器探头的上升时间和带宽
示波器最主要的三个局限性是:灵敏度不足、输入电压的容许范围太小以及带宽有限。 除了在信号灵敏度要求很高的特殊场合,通常我们都能够保证信号电平高于一般示波器的最低信号灵敏度电平:高电平数字信号的最大电平小于5V,这也在大多数示波器的最大电压测量范围之内。由此看来,最严重的限制是带宽。 毋庸置疑,财示波器的探头一样,示波器的垂直放大器也有一个带宽率。这个数值是什么含义呢?很少有工程师会用100MHZ的示波器去测量200MHZ的数字信号,但是用它去测量99MHZ的信号又会怎样呢?带宽的精确含义到底是什么呢?它又如何对数字信号产生影响呢? 图3.1给我们提供了一些线索。图中的两个波形是用两个带宽相差很大的示波器探头观察同一个
[测试测量]
示波器探头的上升时间和<font color='red'>带宽</font>
WiMAX借势全球热量欲融中国坚冰
在中国,WiMAX发展的政策“坚冰”未破,以低成本和高带宽见长的WiMAX一直在以“私生子”身份成长,缺乏“根正苗红”的发展根基。尽管WiMAX的发展面临重重挑战,但随着WiMAX在全球的不断升温,包括运营商和设备商在内的一些重量级企业都在不遗余力地推进WiMAX。 进入2007年,WiMAX在全球范围内不断升温。日前在北京举行的第三届全球WiMAX高峰会议上,全球WiMAX论坛理事兼副主席Mohammad Shakouri透露,在WiMAX方面,中国力量正不断壮大,除了原来的中兴、华为、上海贝尔阿尔卡特、中国电信、中国网通、信息产业部电信研究院、UT斯达康、上海微电子研究所、北京交通大学等会员,联想、烽火、展讯等公司已于近
[焦点新闻]
示波器应用:小探头有讲究
别看一个示波器探头很简单,其实还是很有讲究的。 1、首先是带宽,这个通常会在探头上写明,多少MHz。如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。 2、另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模拟示波器有这个调节端子,
[测试测量]
仪器带宽对测量结果的影响
工程师们在调试的过程中,会经常发现,同一个信号用不同的设备测试,结果往往会有些差别。到底哪一个结果才是准确的?我们要科学的选用设备进行测试,不要被错误的结果“蒙骗”了。 不同的测试设备都有典型的应用场合和测量范围,之所以会出现测量结果不一致的情况,往往和测试设备本身的参数特性有关系,其中很关键的一个指标就是仪器的带宽。带宽不同的仪器,哪怕测试相同的信号,测试结果往往也都不同。 首先我们来看看仪器测量带宽是什么。仪器的测量带宽简单而言就是仪器能够测试的频率范围,我们将信号幅值衰减到-3dB的频率点称为带宽截止频率点,即在输入某一频率正弦波,测量到的幅度衰减为实际幅度的70.7%时,该频率点称为带宽,如下图所示。 不
[嵌入式]
仪器<font color='red'>带宽</font>对测量结果的影响
霍尔效应的电流探头标称的最大电流是否有测试带宽的限制
电流探头探测的电流大小与带宽有关 电流探头是基于霍尔效应进行测试的,所以测试之间要对该探头进行消磁和调零。 在探头的手册中可查看相关的曲线.例如下图的 N2780B 电流探头的降额曲线:N2780B AC/DC Current Probe, 2 MHz, 500 Arms 例如,使用 N278X 电流探头的时候,首先需要与外部 N2779A 供电电源连接。同时,连接示波器的时候,需要选择1M欧姆的端接,并根据探头末尾的比例关系,配置示波器通道。 具体步骤如下: 1.闭合探头前端的开关,使探头处于“LOCK”状态; 2.对探头进行消磁操作,通过探头末尾的“DEMAG”按钮进行消磁; 3.对探头进行调零,通过调节探头末尾的开关
[测试测量]
霍尔效应的电流探头标称的最大电流是否有测试<font color='red'>带宽</font>的限制
IBM另辟蹊径,Power6速度有望超越Intel双核处理器
IBM将凭借下一代Power6处理器实现前所未有的超越。Power6处理器的运行速度将达到4-5GHz,二级缓存达到8Mb,与外置存储器可实现75Gb/s的连接。 Power6的频率和带宽是现有的Power5处理器的两倍,但功耗运行管道深度却丝毫没有增加。IBM将从明年中期开始批量供应这一处理器,届时将给现有的P系列服务器注入一剂强心针。IBM系统和技术集团的Brad McCredie说:“我们需要扩展整个系统。如果你只是增加了多内核而不扩展缓存和内存带宽,并不能真正提高CPU的性能。” IBM将可能在处理器速度上超越英特尔,尽管目前它并没有对最终将正式供应的Power6处理器给定一个明确的速度值。英特尔现在已经可以供
[焦点新闻]
ADI双通道16位DAC实现行业最高信号带宽
ADI 2.8 GSPS DAC的带宽比竞争器件高70%,可拓宽新兴E频段无线电的应用范围,降低其开发成本。 中国,北京——Analog Devices, Inc. (NASDAQ: ADI),全球领先的高性能信号处理解决方案供应商及数据转换器市场份额领先者,近日推出业内首款面向电信系统制造商的2.8 GSPS双通道16位转换器AD9136,可满足点对点无线回程设备的微波频率要求。 16位AD9136和11位AD9135这两款双通道DAC可实现比竞争器件高70%的信号带宽,同时还可帮助设计师支持日益兴起的E频段(71-76 GHz和81-86 GHz),无线运营商采用这些频段是为了满足不断增长的高速移动语音
[网络通信]
ADI双通道16位DAC实现行业最高信号<font color='red'>带宽</font>
USB3.0接口的传输速率是多少?
USB2.0接口为各种设备和应用提供了足够的带宽。然而,随着高清视频、TB(1024GB)级存储设备、数千万像素相机、大容量智能手机和携带式多媒体播放器的出现,更好的带宽和传输速率成为必要条件。 480Mbps的传输速率可能不快,更何况没有USB2.0接口设备能做到理论上的最高速率。在实际应用中,做到320Mbps的平均速度是非常好的。 其实USB3.0接口同样达不到5.0Gbps的理论值,假如只能做到80%的理论值,那也是USB2.0接口的10倍。USB3.0接口的mac层选用8b/10b编码标准,如此得来的基础理论速率也就是4Gbps,实际速率除协议费用,在4Gbps的基础上要少一些。 USB 3.0 AF 90度
[嵌入式]
USB3.0接口的传输速率是多少?
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved