胆机六大故障及修理方法

最新更新时间:2011-10-07来源: 互联网关键字:胆机  故障  修理 手机看文章 扫描二维码
随时随地手机看文章
胆机故障一般来说不外乎以下六大种类。
  一、输出功率变小,声音变得软弱无力
  1?功率管老化。可以测量功率管的屏流。用100mA的直流电表,负表笔接屏极,正表笔接输出变压器,开启高压就能从电表中读出屏流数。在偏压正常情况下,如测得屏流小于正常值,就可以说明功率管衰老。如测得的屏流大于正常值,则可能有几种情况:A、功率管屏压过高,特别是帘栅极压过高;B、功率管本身质量有问题,本身屏耗大,输出功率势必减少。如果测不到屏流,说明功率管已经损坏。
  2?栅偏压不正常。在自给栅偏压的功放电路中,常见栅偏压的故障有:A、无偏压,造成这种情况的原因有功率管失效无屏流、阴极电阻两端无电压降,阴极旁路电容器被击穿等几种。B、偏压小,原因为功率管衰老或屏压低。C、偏压高,原因有屏压增高、特别是帘栅压增高使屏流增大、阴极电阻阻值增大、栅极交连电容器漏电或击穿使栅极上加有正电压等几种。此外,阴极电阻开路也会使偏压增大,此时屏流很小,线路存在寄生振荡。
  3?输出变压器局部短路。将造成屏流增大,而使屏极发红、输出减少且失真增大。如果是初级局部短路,那么在空载时输出电压不会减少,在接上负载或负载很轻的情况下,只要栅极激励电压达到额定值时,则功率管全部屏极发红,这是个典型现象。检查输出变压器初级是否局部短路时,可将输出变压器初次级接线与电路全部断开,从初级端上送进220V市电,用万用电表交流挡测量两个初级端与B+中心头的电压,正常时,两线端电压相等。有局部短路时,则一线端电压低于另一线端电压。如果一接上220V市电就立刻烧毁保险丝,则说明局部短路很严重,必须更换输出变压器。
  检查输出变压器次级有无短路故障前,首先要检查次级上并联的高频抑制电路和负反馈电路元件有无变质、失效和击穿等情况,然后再检查次级线与铁芯之间有无击穿短路。
  4?推动级激励电压(或功率)不足。功率管栅极激励电压(或功率)不够,无论功率管工作状态怎样正常,仍不能有额定的功率输出。
  5?多管并联推挽工作,其中一只或数只管的屏极抑制电阻或栅极抑制电阻开路,此时不仅失真大,而且输出功率小。
  6?自给栅偏压的阴极旁路电容器失效形成开路,产生电流负反馈,对某些胆机来说,可能影响输出功率。
  二、功率放大级高压加不上
  高压加不上有两种情况:一是通电时,保险丝立即烧断,二是胆机在工作过程中突然发生烧断保险丝而切断高压电源。将放大器的输出变压器中心头高压B+与高压电源连线断开,然后开启高压,如果此时仍然烧断保险丝或不能启动高压,则故障不在功率放大电路,而在电源电路;若断开高压B+连线后,能启动高压,那么可以肯定故障在功率放大级。
  功率放大级的高压电源加不上应从以下几方面着手检查:
  1?观察或测试功率管内部是否各电极相连。
  2?检测输出变压器是否击穿短路。常见是初级或次级线圈间被击穿短路。
  3?负载过重或负载短路。负载过重或短路能致使屏流增大而过载,烧断保险丝或加不上高压。
  三、寄生振荡
  放大器出现如“嘶啦嘶啦”的高频振荡和“扑、扑”的低频振荡等寄生振荡声时,轻则屏耗增大,屏极发红,输出减少,重则不能工作。产生寄生振荡的原因有以下几种:
  1?负反馈电阻等元件变质或损坏。
  2?输出变压器次级并联的旁路电容器开路或击穿引起高频振荡。
  3?多管并联推挽工作的屏、栅极电阻损坏或变质也容易引起振荡。置换栅极电阻,千万不可用线绕电阻,因为它的电感将引起振荡。
  4?功率管尤其是高互导式功率管及抑制振荡电路中的元件使用日久后参数变化,也容易产生振荡。
  5?电源电压过高。因供电电压过高,破坏了功率管正常工作状态也能引起振荡。
  四、功率管屏极发红
  放大器在正常工作时,如果在较明亮的环境中看到屏极发红,就是不正常的现象。引起屏极发红的原因可能是:
  1?负载过重引起屏流过大。这种现象比较常见,主要是由于扬声器阻抗配接不当,或外线有短路、或输出变压器初级线圈局部短路。
  2?负栅偏压减少,或无负栅偏压,或出现正栅偏压。
  负栅偏压减少的原因可能是:负偏压电源滤波电容器失效或容量减少;分压负载电位器中心滑片调得过低;整流管衰老;偏压电源变压器次级局部短路;自给栅偏压的阴极旁路电容器漏电严重;输入变压器的初级和次级(或耦合电容器)轻微漏电等问题。
  无负栅偏压的原因可能是:输入变压器中心抽头断路;偏压电源滤波电容器短路;偏压负载电阻损坏。整流管或偏压电源变压器损坏;自给负栅偏压阴极旁路电容击穿;栅极电阻或输入变压器次级断路;管座损坏,使栅极管脚与管座脱离。
  3?后级功率管的屏压或帘栅压升高,使屏流增加,屏极发红。
  屏压升高的原因可能是:A、高压电源变压器初级线圈局部短路,使次级高压线圈的交流电压升高;整流后输出直流电压增加;B、泄放电阻断路,输出电压升高。C、滤波扼流线圈局部短路,电感量减少,降压减少,输出电压升高。
  帘栅电压升高(指采用束射四极管和五极管做功率放大级的机器),吸收电子的能力增强,使屏流增加,屏极发红。其中的几种原因可能是:A、高压电源变压器初级局部短路,使次级高压升高,整流输出直流电压增加。B、次级高压电位器调整不当。C、次级高压滤波扼流圈匝间局部短路,使输出电压升高。D、泄放电阻断路,输出电压升高。
  4?超音频或高频寄生振荡,致使屏极发红。这两种寄生振动荡是由于后级的总寄生电容的正反馈引起的。有效的判断方法是,当屏极发红时,将负载阻抗换成放大器输出功率1/20左右的电阻,阻值等于输出阻抗。开机不送入讯号,几分钟后,手摸电阻如果感到发热,那么就存在高频寄生振荡了。
  5?推挽管衰老,破坏推挽平衡,引起屏极发红。在推挽功放中,尤其是在并联推挽(如150W的扩音机中一般用KT-88管每两只并联)中,其中一边的管子衰老,内阻增加屏流减少,没有衰老的管子负担过重,屏流增加,屏极发红。
  6?输出变压器的初级线圈的一边局部短路,破坏了推挽平衡,使该边的屏流增加,屏极发红。
  7?输入讯号过大,使输出电流和电压超过额定值,引起屏极发红。
  8?有些放大器本身设计不当。因屏压、帘栅压、灯丝电压过高,或负栅偏压太小,静态屏流过大,甚至静态时,也会使屏极发红。
  五、失真
  所谓失真,是指经放大器的输出与输入波形相差过大,放大器放大出来的声音与原来输入的声音不一样。主要几种原因分析如下:
  1?推挽功率管或推动级推挽管有一只衰老(或损坏),使两管的增益不一样,或者输出变压器初级(或输入变压器的次级)一边局部短路或开路;屏极和栅极的防振电阻变值,也会破坏推挽平衡,引起失真。
  2?有的放大器推挽与前级是用阻容耦合的,当一边的耦合电容器变值(容量变小、失效、漏电等)时产生失真。如果该电容漏电,还会使下一级电子管的负栅偏压变小,甚至变成正电压,产生栅流,引起失真。
  3?固定负栅偏压过高或过低,使电子管的工作点发生变化,或输入讯号过大等,都能使电子管工作于非线性部分,引起失真。
  4?小功率放大器功率管一般都工作于AB1类(或A类)推挽放大,如果输入讯号电压峰值大于负栅偏压时,功率管将出现栅流,由于这类工作状态的栅路内阻较大,因此容易引起失真。
  5?在中功率以上的放大器中,功率管一般都工作于AB2类(或B类)推挽放大,如果推动级的输出功率不足或由于推动管衰老使内阻太大时,会引起失真。推动级要用内阻小的电子管,并用降压变压器进行倒相,才能获得稳定的输出电压。
  6?屏极负载电阻、阴极电阻或帘栅极电阻变值,使电子管的工作点变化,工作于非线性区,引起失真。栅极电阻断路,引起阻塞失真。同时负载阻抗太轻或太重,使电子管的输出阻抗不匹配引起失真或音轻等。
  7?电源电压不稳定或过高过低,都会改变各级电子管的工作点,引起失真。
  六、交流声
  一般来讲,由于后级电压放大倍数不大,因此,由功率放大级故障引起的交流声不十分明显,但有几种故障却能出现明显交流声。
  1?功率管内部栅阴两极短路或漏电,阴极与灯丝连极短路,灯丝电源变压器接地不良。
  2?固定偏压滤波不良。
  3?推动变压器初次级间漏电,或栅极交连电容器漏电使栅极带正电等。
  4?整机接地不良。特别是搭棚焊接和灯丝用交流电供电的胆机对接地要求很高,在调试过程中要不断试用各个接地点以获得最佳信噪比,另外接地点的电阻越小越好。
关键字:胆机  故障  修理 编辑:神话 引用地址:胆机六大故障及修理方法

上一篇:音响中的场效应管和双极型晶体管
下一篇:声学原理

推荐阅读最新更新时间:2023-10-12 20:30

信号发生器维修--N5182A输出超差故障维修案例
检测过程 经检测,仪器射频大板组件损坏。 维修过程 更换控制板损坏组件,工程师整机调整检测仪器。 维修结果 仪器正常开机,完成修复。
[测试测量]
信号发生器维修--N5182A输出超差<font color='red'>故障</font>维修案例
找到CAN总线(故障)节点的三种办法
CAN总线的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持,在带来便利的同时,也为工程师们故障排查增加了难度,所以本文主要给大家介绍了找到CAN总线(故障)节点的三种办法。 1、 将所有节点都拔掉,依次往上接。 当CAN总线出现故障后将所有节点都拔掉,之后一个一个节点往上接,接到系统出错时,即找到最后一个插入节点为故障节点。如下这种情况,图1为新能源车控制总线,车辆启动后仪表显示滞后,显示错误。导致司机判断延迟与错误,影响交通安全。将所有节点拔掉之后,采用此方法挨个节点往上接,直到电机控制器接到总线上出现了通信故障,初步判断为电动机运行产生的强干扰,串扰到CAN总线上,导致帧错误增加,重发频繁,正
[嵌入式]
找到CAN总线(<font color='red'>故障</font>)节点的三种办法
LED发光模块故障及解决方法
一、现象:所有的LED闪烁; 问题:接触不良; 解决方法:松动处重新固定或接插; 二、现象:LED昏暗; 问题:1、LED极性接反了; 2、LED太长; 3、开关电源和LED电压标号不一致; 解决方法: 1、确保正、负极接线正确; 2、减少LED的连接; 3、确保开关电源与LED电压标号一致性; 三、现象:部分线路的LED灯不亮; 问题:1、接插方向是否正确; 2、电源输出接线是否正确; 3、电源线插反、接反; 解决方法:1、拆出,重新正确方向接插; 2、确保红色线接正极,黑色线接负极; 3、查出部分插反的
[电源管理]
电容式触摸屏原理及故障处理
  电容式触摸屏结构图 一、 电容式触摸屏概念 电容式触摸屏技术是利用人体的电流感应进行工作的。电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极 ,内层ITO为屏蔽层以保证良好的工作环境。 当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流 来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。 二、电容式触摸屏工作原理 电容屏要实现多点触控,靠的
[电源管理]
电容式触摸屏原理及<font color='red'>故障</font>处理
液位仪表的故障判断思路
液位仪表中差压式液位仪表占有很大的比例,重点对其进行介绍。液位参数的变化速度与容器的容积有很大的关联,这应根据实际情况来判断它的变化速度是否正常。如锅炉的汽包液位变化就很快,但液体储罐的液位变化就较缓慢。液位显示突然出现大的变化和波动,如指示最大或最小时,则仪表出故障的可能性很大。 当液面显示值跑步到最大或最小时,应先检查差压变送器,如果变送器正常,则大多为显示仪表有故障。如果变送器的输出与显示仪表的显示一致时,可将液位控制系统改为手动操作,即人工改变调节阀的开度,来观察液位有无变化, 液位有变化一般为工艺的原因,没有变化则仪表有故障。 液位记录曲线波动很大且快时,有可能是pid参数整定不当,或参数有了改变。变送器的阻尼没
[测试测量]
Cortex—M3的SRAM单元故障软件的自检测研究
引言 目前,对于存储单元SRAM的研究都是基于硬件电路来完成,而且这些方法都是运用在生产过程中,但是生产过程并不能完全杜绝SRAM的硬件故障。在其使用过程中,如果SRAM硬件出错,将导致程序出错而且很难被发现。因此在运用的阶段,为防止存储单元损坏而导致系统出错,通过软件的方式对SRAM进行检测是必要的。 1 SRAM运行状态分析 SRAM是存储非CONSTANT变量(如RW),它具有掉电即失的特点。由Cortex—M3的启动步骤可知,系统上电后,首先执行复位的5个步骤: ①NVIC复位,控制内核; ②NVIC从复位中释放内核; ③内核配置堆栈; ④内核设置PC和LR; ⑤运行复位程序。 可以看出,不
[工业控制]
Cortex—M3的SRAM单元<font color='red'>故障</font>软件的自检测研究
$err故障变量的用法介绍
$ err 具有有关当前程序信息的结构 该变量可用于评估相对于提前运行的当前执行程序。例如,该变量可用于评估程序中的错误,以便能够使用适当的故障服务功能对其进行响应。 该变量具有写保护,只能被读取。 该变量可用于评估相对于提前运行的当前执行程序。例如,该变量可用于评估程序中的错误,以便能够使用适当的故障服务功能对其进行响应。 该变量具有写保护,只能被读取。 $ ERR对于和提交解释器是分别存在的。每个解释器只能访问其自己的变量。对于命令解释器,$ ERR不存在。 每个子程序级别都有其自己的$ ERR表示形式。这样,来自一个级别的信息不会覆盖来自不同级别的信息,并
[机器人]
三相电供电常见故障解析及改善方案
在电力系统中由于电源设计不合理导致的设备故障时有发生,所以对供电电路的可靠性、稳定性提出了更高的要求。传统的供电电路多采用工频变压器加后级降压电路来实现。由于近年来三相电供电故障频发,为了很好的解决三相电供电出现故障后,供电系统仍能稳定可靠的为电力检测设备供电。许多电源厂家推出电力专用的的高频开关电源,这种电源具有许多优点:安全、可靠、体积小、重量轻、综合效率高以及噪音低等优点,非常适应电网设备的应用,目前很多大型设备厂家已开始批量使用。 一、三相电供电常见故障分析 我国供电大多都采用三相四线供电方式。下图为三相四线制示意图,从图中可以看出此种供电方式可以提供两种不同的电压 线电压(380
[电源管理]
三相电供电常见<font color='red'>故障</font>解析及改善方案
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved