利用DC-DC非隔离式负载点(POL)电源模块来简化设计

最新更新时间:2011-10-25来源: 互联网关键字:DC-DC  电源模块 手机看文章 扫描二维码
随时随地手机看文章

采用FPGA、DSP或微处理器设计是设计的关键部分,也最花费时间。系统级设计人员可以通过将主要精力集中于系统设计而受益匪浅,他们还需要解决诸如产品上市时间、实现小型化尺寸的问题。使用最新一代DC-DC非隔离式负载点(POL)电源模块可以为他们带来重要优势。

  这些模块具有高度的集成和密度,先进的封装技术可以发挥高功率密度的优势,整体性能十分可靠——甚至可以满足最苛刻的电源管理要求。使用电源模块意味着需要最少的外部元件,因此设计人员可以迅速实现复杂的电源管理设计,并专注于核心设计。即使是在设计周期的中后期电源需求出现了变化时,电源模块也可以应对自如。

  在介绍电源模块优点的具体细节之前,让我们来看看设计方面的问题。在采用一个分立式(非模块)解决方案时,设计师必须考虑几个问题。所有的问题都可能延缓设计进程,拖延产品推向市场的时间。例如,选择合适的PWM控制器、FET驱动器、功率FET、电感器,以满足代表第一阶段的具体电源要求,这通常是一个漫长的分立式电源设计周期。在选定了这些主要功率器件之后,设计人员必须开发一个补偿电路,其依据是将要在一个给定的系统中使用的各种负载的输出电压规格。这可能非常单调和乏味,还要花很多时间——往往还需要返工。除了补偿电路设计,还需要选择功率级、驱动器、功率FET和电感器,以满足功率效率的目标。这可能需要根据不同的应用需求进行反复的元件选择。

  在设计分立式电源之后,布板工作以及噪声和散热要求方面的问题增加了设计周期的复杂性。总之,这是一个繁琐的过程。

  但是像Intersil DC-DC POL ISL8200M这样的电源模块就可以改变这个过程,因为它集成了PWM控制器、驱动器、功率FET、电感器、支持分立元件的IC,还有优化的补偿电路。所有这些都集成在一个15×5mm QFN封装内。该电源可以根据其电流共享架构的输出功率要求进行扩展,该模块采用耐热增强型封装,高度仅为2.2mm,所以它可以安装在PCB的背面。

  当顶层PCB空间存在问题时,ISL8200M的2.2mm低高度QFN封装就成为了一种优势。低高度封装将满足大多数PCB背面的间隙要求,尤其是因为QFN封装不需要散热器或气流,可以覆盖大部分工业温度范围的全输出功率范围。利用QFN封装底部非常低的2C/W热阻的θ J/C值,大部分的热量都可以通过封装底部和安全通孔消散掉,并下行至PCB的接地层。这是因为功率MOSFET和电感器等内部高功率耗散元件直接焊接到了这些大型导电片(conducTIve pad)上,从而实现了从模块到PCB的有效传热,以提高热效率,最终可以将一个最高360W负载点电源解决方案安装在PCB的背面。在需要一个复杂的电源设计和顶层PCB空间有限时,这是非常有效的方法,因为它减少了外形尺寸,同时实现了更高的系统功能。除了散热能力,QFN封装的封装边缘周围有暴露的引线,为使用所有引脚进行调试和焊点仿真验证提供了便利。

  


  

  (图字:最大负载电流(A);环境温度(℃);图32:降额曲线(12VIN))

  在系统设计周期中,负载电流要求可能会改变,但电源却不需要改变。ISL8200M可以支持整个温度范围从低于10A一直到高达60A的负载电流。每个独立的电源模块可以单独支持10A的输出电流,但是,通过使用该模块的专利均流架构,这些模块可以并联起来,提供高达60A的输出电流。所以,一旦在设计中采用了ISL8200M,电源就可以迅速进行修改,以满足各种不断变化的应用需求。此外,由于采用了专利的模块电流共享架构,在一个给定应用需要一个高功率的解决方案时,如果布局限制成为了一个问题,并联多个ISL8200M模块将为克服这一挑战提供灵活性。当输出电压调节没有受到所需的模块连接布局的影响时,并联连接模块的主连接(main connection)解决了布局敏感性的问题。输出电压远端监测和模块之间的有功电流共享平衡可以降低PCB走线布局的敏感性,所以这种灵活性可用来应对最复杂的电源设计和布局方面的挑战。

  当电源要求大于10A时,只需要5个主连接并联多达6个模块。输入和输出电压轨需要连接起来,同时需要大容量电容以减少瞬变对电源的影响。建议对输入电压使用总共220uF的电容,而对输出电压使用总共330uF的电容。如果需要满足苛刻的噪声规格,可以增加旁路电容,以便滤除外部高频噪声。其次,还必须连接使能引脚,以便根据系统的要求禁用或启用供电。连接的使能引脚可以作为一个重要的故障保护功能,即产品故障握手功能(products fault handshaking function)使用。如果模块当中的一个出现了故障,该模块即被禁用,所有已连接的模块也将被禁用,以防止负载或电源模块出现过应力的情况。然后应连接CLCKOUT和FSYNC_IN引脚。连接了CLCKOUT引脚的模块被认为是主电源模块,需要设置参考开关频率。

  在一个有两个模块的操作中,与FSYNC_IN连接的模块的开关频率将为180°异相。对于并联的两个以上模块,相位控制是根据数据表建议,通过在PH_CNTRL或相位控制引脚增加一个电阻分压器来调整的。利用各自异相编程开关频率的多相操作,能够实现降低外部噪声或纹波。这减少了满足给定负载点关键输出的电压调节要求所需的外部电容或电容器的数量。最后,ISHARE引脚之间必须连接起来。这个引脚是用来平衡每个模块的负载电流。在这个连接接入了一个电阻RISHARE,以便设置总输出电流。模块ISET引脚的一个附加电阻用来建立一个内部电压,用于比较ISHARE总线,以帮助平衡每个模块的输出电流。与目前市场上的同类解决方案相比,由于模块之间的连接少了很多,而且在设计周期中几乎不必考虑布局的敏感性,并联操作的ISL8200M大大降低了复杂性。

  一旦在设计中采用了像ISL8200M的电源模块,就能够迅速并联6个模块,实现高达60A的功率,这将加速未来的设计,或迅速适应设计周期过程中设计要求的变化。

  

  部署在非隔离式DC-DC POL电源中的电源模块可以节省时间,减少研发成本,加速产品上市时间,并有助于设计人员将更多的精力集中在核心系统设计。上述电源模块的高度集成的元件、耐热增强型低高度QFN封装,以及获得专利的电流共享架构,都有助于加速设计周期。该电源模块还提供了有一个在线仿真工具(iSim)和评估板。

关键字:DC-DC  电源模块 编辑:神话 引用地址:利用DC-DC非隔离式负载点(POL)电源模块来简化设计

上一篇:LED的实际应用
下一篇:LED灯具失效分析及电路保护措施

推荐阅读最新更新时间:2023-10-13 10:55

基于UC3843的高效DC-DC模块电源设计
DC/DC 模块电源是电子产品设计中广泛使用的二次电源, 它将一次电源单一的输出电压进行二次变换, 变成各种需要的电压, 提供给芯片。由于模块体积小, 所以功率密度要求高, 同时工作环境较为恶劣, 可靠性要求高; 模块电源一般要求工作温度为- 20 ~55℃ , MTBF(平均无故障时间)要求在20万小时以上。   本文提出了一种基于UC3843芯片DC/DC 模块电源的实现方案, 电路简洁, 工作可靠, 转换效率高。   1 UC3843功能及技术特性   UC3843是一种高性能固定频率电流模式控制器,专为直流至直流变换器低压应用而设计, 设计人员只需采用少量外部元件就能获得性价比高的解决方案。
[电源管理]
控制与缓冲型半桥DC-DC变换器的PWM控制
  半桥电路由两个功率开关器件总成,并向外提供方波信号。而基于半桥而来的DC-DC转换器由于结构简单,并且易于操作,经常被用于中小功率电路的设计当中。大家都知道,常见的半桥控制器通常有两种控制方法,一种是对称控制,而另一种则是不对称互补控制,本文主要分析实现半桥DC/DC变换器软开关的PWM控制策略。   控制型软开关PWM控制策略   控制型软开关半桥DC/DC变换器不增加主电路元器件(可增加电感电容元件以实现软开关条件),通过合理设计控制电路来实现软开关。图1给出4种控制型软开关半桥DC/DC变换器的PWM控制策略。   图1 控制型软开关PWM 控制策略   不对称互补脉冲PWM控制   开关管的控制脉冲不对称互补
[电源管理]
控制与缓冲型半桥<font color='red'>DC-DC</font>变换器的PWM控制
电源管理:满足复杂DC-DC功率转换要求
引言 在测试测量设备或嵌入式计算等工业应用中,嵌入式DC-DC转换器的系统架构可能相当复杂,在输出 电压 和 电流 、纹波、EMI及上电顺序等许多不同方面都有相关要求。本文主要探讨了DC-DC应用中转换器功率级选择的影响。 先进嵌入式DC-DC转换器的要求 许多工业系统,如测试测量设备,都需要嵌入式DC-DC转换器,是因为这些应用所需的计算能力日益增加。这种计算能力由DSP、FPGA、数字ASIC和微控制器提供,而得益于工艺几何尺寸的日益缩小,该类器件在不断的进步。另一方面,这也带来了三大要求:第一, 电源 电压越来越低(当然,还有容许的电压纹波和负载变化);其次,电源电流逐渐变大;第三,这些IC通常需要为
[电源管理]
电源管理:满足复杂<font color='red'>DC-DC</font>功率转换要求
适用于汽车电源系统的全桥推挽式双向DC-DC变换器
  1 引言     随着诸如电动汽车、混合动力汽车和燃料电池汽车等新能源汽车对电能需求的日益增长,基于超级电容器的储能系统被越来越多的应用于主电源系统的辅助充放电功能。双向DC-DC变换器可以实现低压超级电容侧和高压传动系统侧之间的电能传输,高压侧包括1个3相变频系统和主电源,如图1所示。一般来说,高升压/降压比的电功率变换,在拓扑中可以通过一个高频变压器来实现。对于低电压大电流侧来说,广泛采用同步整流器来减少整流传导损耗 。 图1 基于汽车储能系统的超级电容器     本文提出了一种结构,将一个高频变压器与基于双向DC-DC变换器的全桥/推挽电路相联接,为汽车电源系统提供充放电服务。它可以在低电压大电流超级电容侧和高电
[电源管理]
适用于汽车电源系统的全桥推挽式双向<font color='red'>DC-DC</font>变换器
大功率高频并联软开关电源模块研究
本文提出了有限双极性的软开关控制策略,研究其控制机理。通过隔直电容配合饱和电感强迫一次侧电流在滞后臂关断之前衰减至零,实现滞后臂的零电流开关;而超前臂利用开关器件外并电容作用实现零电压开关,在不增加系统复杂性的前提下实现了系统的软开关,使得软开关范围不受负载的影响,解决在传统移相软丌关控制策略中存在的占空比丢失问题,提高了变压器利用率,降低了系统损耗,提高了功率密度。
[电源管理]
大功率高频并联软开关<font color='red'>电源模块</font>研究
正确运用DC-DC降压/升压调节器进行设计
  DC-DC 开关转换器的作用是将一个直流电压有效转换成另一个。高效率DC-DC转换器采用三项基本技术:降压、升压,以及降压/升压。降压转换器用于产生低直流输出电压,升压转换器用于产生高直流输出电压,降压/升压转换器则用于产生小于、大于或等于输入电压的输出电压。本文将重点介绍如何成功应用降压/升压DC-DC转换器。降压和升压转换器已在2011年6月和9月的《模拟对话》 中单独介绍过,此处将不再赘述。   图1所示为采用单个单元的锂离子电池供电的典型低功耗系统。电池的可用输出范围为放电时的约3.0 V到充满电时的4.2 V。系统IC需要1.8 V、3.3 V、和3.6 V的电压,以实现最佳工作状态。锂离子电池开始工作时的电压为4.
[电源管理]
正确运用<font color='red'>DC-DC</font>降压/升压调节器进行设计
怎样通过测试来判断电源模块可靠与否
电源作为电路系统的“心脏”,其重要性是显而易见的。在选择电源模块时,除了要考虑输入电压范围、额定功率、隔离耐压、效率、纹波&噪声等性能特性外,还需针对其高低温性能和降额设计进行可靠性测试。 电源可以说是电路系统的“心脏”,为各级电路提供“血液”,其重要性是显而易见的。那么如何有效的选择一款高性能高可靠性的电源模块呢?我们首先会关注电源模块的输入电压范围、额定功率、隔离耐压、效率、纹波&噪声等输入输出特性,判断是否满足自己的使用要求,甚至参照数据手册一一对照测试各项指标,判断是否和宣称的一致。但对于电源模块的可靠性来说,做完这些还是远远不够的,还有两个方面是需要深挖测试的,那就是高低温性能和降额设计。 1、高低温性能
[电源管理]
怎样通过测试来判断<font color='red'>电源模块</font>可靠与否
美芯晟推出2A, 24V降压DC-DC转换器MT8102
    美芯晟科技有限公司(MaxicTechnologyCorp.)今天宣布推出宽输入电压范围2ADC-DC转换器。MT8102是一款电流模式降压转换器,输出电流高达2A,输入电压从4.75V到24V,0.8V的反馈电压支持很低的输出电压,其输出电压在0.8V到21V间可调。500KHz的开关频率允许较小的电感,最高效率可达95%,内部集成了过温保护,过流保护,以及短路自动降频等功能。MT8102拥有脉冲跳跃模式,非常平滑的软启动功能。即使在小电流输出时,还能保证很高的输出效率。     MT8102是绿色环保产品,温度范围达到扩展的工业标准-40℃到+85℃,并采用SOP8和MSOP10的封装,已进入量产。    
[电源管理]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved