单/多踪示波器转换电路的设计

最新更新时间:2011-11-08来源: 互联网关键字:示波器  转换电路 手机看文章 扫描二维码
随时随地手机看文章

引言

  为了对信号进行测量和比较研究,需要把不同信号或同一信号的不同部分同时显示在荧光屏上。这些都需要在荧光屏上能同时显示几个波形。为了实现这一目的,通常采用双扫描示波显示、多线显示或多踪显示。本文介绍的将单踪示波器改为多踪显示的一种装置,制作简单,与原有的示波器一起使用,既节约了开支,又提高了实验技术水平。

  典型电路设计与分析

  转换电路由NE555时基振荡器、74LS169组成的计数器和MAX309多路开关等芯片构成,通过1个Y通道能同时显示多踪信号,电路简单、稳定、可靠,波形显示效果好,便于对信号进行分析和研究,其电路如图1所示。

单/多踪示波器转换电路

  本电路采用555芯片作为振荡器,其3脚输出的方波作为切换电路的控制信号,控制信号直接接在16进制的计数器上作为多路开关的选通信号。

  MAX309为双回路开关芯片,一路为直流通道,另一路为信号通道,两路信号通过加法器后在示波器水平位置上同时显示四路不同的信号。由于输入信号为交流信号,故使用双电源供电,除保证交流信号正常传输外,同时也扩大了信号输出的动态范围。

  外部电源仅需要+5V的电源电压、+5V电压输入至IC1(ICL7660)的8脚,在其5脚输出-5V的电压,对多路开关芯片与运放进行供电。IC2(NE555)接成多谐振荡器的形式,产生35kHz的方波作为16进制计数器IC3(74LS169)的时基信号。取74LS169的低两位Qa、Qb,连接到IC4(MAX309)的A0、A1端作为多路开关的选通信号。MAX309为双回路的模拟开关芯片。其中一路是由2K、1K、1K、1K组成的电阻分压网络,分别取出3V、2V、1V、0V的直流电压作为信号所要显示波形的直流分量,使其在示波器的不同位置上显示出来。另一路则为信号源的四个输入端,通过Qa、Qb对四路开关的控制,分别对回路信号进行选通(两路选通信号同步进行)。信号由多路开关输出后再由运放电路IC5(LF353)进行放大或衰减处理。信号通过改变反馈电阻10K、10K、40K、60K、60K对其进行放大或衰减。用四路波段开关分别选择不同反馈电阻,实现不同增益的控制,最终完成与直流分量重叠相加后输出的目的。

  电路调试

  电路焊接完毕后,首先进行外观检查,检查无误后,再进行通电测试。用万用表测ICL7660的5脚是否为-5V,如果输出正确,进行下一步的测量,否则马上断电检查,是否有短路或电路焊错等问题;用示波器观察555输出的波形是否正确,其频率值是否与计算值相同;其次再用示波器观察计数器的Qa、Qb端的波形是否为555时基信号的二分频、四分频,最后观察第一路开关的输出是否为阶梯波信号,台阶数值分别为0V、1V、2V、3V。然后分别接入4路不同的信号,用示波器观察其最终输入波形是否在示波器水平位置上显示出来,改变波段开关即可改变其幅值的大小。

  振荡电路与模拟开关电路的分析

  NE555时基振荡器输出频率的精度对由74LS169所组成计数器的可靠性影响较大,因此,必须给予重视。如图1所示,NE555组成的时基振荡器产生的振荡周期T=0.693(R1+2R2)·C,振荡频率f=1/T,即f=1.443/(R1+2R2)·C,输出振荡频率波形的占空比D=t1/T=(R1+R2)/(R1+2R2)

  注:t1为输出脉冲的持续时间

  t1=0.693(R1+R2)·C

  当R2>>R1时,则D约等于50%,即输出振荡波形为方波。由上述有关公式的推导,得出以下结论。

  ● 振荡周期与电源电压VDD无关,主要取决于充电放电的总时间常数,即仅与R1、R2和C的数值有关。

  ● 振荡信号的占空比与电容C的大小无关,而仅与R1、R2的大小比值有关。

  模拟开关和多路转换器的作用主要用于信号的切换,目前集成模拟电子开关在小信号领域已成为主导产品,与以往的机械触点式电子开关相比,集成电子开关有许多优点,例如,切换速率快、无抖动、耗电省、体积小、工作可靠且容易控制等。但它也有若干缺点,如导通电阻较大,输入电流容量有限,动态范围小等。因而集成模拟开关主要使用在高速切换,要求系统体积小的场合。在较低的频段上(f<10Hz),则广泛采用双极晶体管工艺。

  选择开关时需要重点注意以下指标:

  ● 通道数量。集成模拟开关通常包括多个通道,通道数量对传输信号的精度和开关切换速率有直接的影响,通道数量越多,寄生电容和泄漏电流就越大。

  ● 泄漏电流。一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量时,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。

  ● 导通电阻。导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失会更大。因此,导通电阻的一致性越好,系统在采集各路信号时由开关引起的误差也就越小。

  ● 开关速度。指开关接通或断开的速度。对于需要传输快变化信号的场合,要求模拟开关的切换速度快,同时还应考虑与后级采样保持电路A/D转换器的速度相适应,从而以最优的性能价格比来选择器件。

  除上述指标外,芯片的电源电压范围也是一个重要参数,它与开关的导通电阻和切换速度等有直接关系,电源电压越高,切换速度越快,导通电阻越小,反之,导通电阻越大。

  结语

  在电路设计和调试过程中发现,对波形显示效果影响最大的因素是NE555振荡器的振荡频率和幅度的稳定性,要想在示波器上得到完整而稳定的波形,频率不能偏低,幅度不宜过小。

关键字:示波器  转换电路 编辑:神话 引用地址:单/多踪示波器转换电路的设计

上一篇:有源滤波器与开关电容滤波器的性能比较
下一篇:SHS1000具备宽带隔离的双通道隔离示波表

推荐阅读最新更新时间:2023-10-12 20:32

示波器Pass/Fail测试步骤详解
在现代经济高速发展的社会中,我们使用的电子产品越来越精细,各类参数指标也越来越严格。在进行小批量设备或工业自动化测试时(例如,产品在出厂前需要做某些性能检测),往往意味着对大量重复性指标的测试。市面上大多数台式数字示波器都拥有的 Pass/Fail 功能可以很轻易地完成这项工作,它可以自动捕捉到不符合设定要求的异常信号,把工程师从观察大量信号的过程中解放出来,令工程师更高效地完成测试工作。 那么怎么用示波器来实现 Pass/Fail 测试呢?下面我们将给出详细的测试步骤以供参考。 本例采用鼎阳科技 SDG2000X 信号发生器和 SDS1000X-E/SDS2000X 数字示波器来模拟 Pass/Fail 功能的实际运用。
[测试测量]
<font color='red'>示波器</font>Pass/Fail测试步骤详解
示波器的那些事-探头总汇篇
逻辑探头 如图所示的逻辑探头提供了两个8通道适配夹。每条通道末端有一个探头尖端,带有嵌入式接地,简化了与被测器件的连接。每个适配夹第一条通道上的同轴电缆颜色为蓝色,识别起来非常简便。常用接地采用车用连接器样式,可以简单地制作定制接地连接到被测器件上。在连接到方形针脚时,您可以使用适配器,连接到探头头部,与探头尖端齐平延长探头接地,从而可以连接到头部。这些探头提供了杰出的电气特点及最低的电容负荷。 专用探头 除上面提到的探头类型外,还有许多其它专用探头和探测系统,包括电流探头、高压探头、光学探头、等等。 探头附件 许多现代示波器提供了输入内置的专用
[测试测量]
<font color='red'>示波器</font>的那些事-探头总汇篇
示波器基本知识及波形失真原因
Y 通道 :垂直通道
[测试测量]
<font color='red'>示波器</font>基本知识及波形失真原因
通过算法改善示波器垂直分辨率
一、介绍 自从力科公司发布具有真实硬件12bits ADC 的高分辨率实时示波器HRO 和HDO 后,垂直分辨率已经成为 继带宽、采样率、存储深度后的第四大核心指标。《高分辨率示波器WaveRunner HRO 6Zi》 一文阐述了:示 波器的垂直分辨率受两大因素影响:一是ADC 位数,二是示波器自身的噪声和失真水平。这两个因素都由示 波器硬件决定。 虽然普遍用ADC 的位数来描述示波器的垂直分辨率,但准确的参数是示波器整个系统的有效位数(ENOB)。 ENOB 与信号和噪声失真比 (SINAD)密切相关,两者的数学关系为 SINAD(in dB)=6.02*ENOB+1.76 根据这个关系,SINAD
[测试测量]
通过算法改善<font color='red'>示波器</font>垂直分辨率
ZDS2022十全十美示波器之112Mpts存储深度
示波器采集信号时有一个重要的关系式:存储深度=采样率×采样时间,存储深度是指示波器的采集存储器的容量,表示可以存储的采样点的数量。 奈奎斯特告诉我们采样率要大于2倍信号带宽,否则会产生混叠后果很严重。实际应用中通常为5倍或更高;因此为了确保测量的准确性,采样率是不能随便牺牲(降低)的;分析过程中,我们往往需要观察信号变化的整个过程,这个过程决定了最小的采样时间,特别是低频信号,需要很长的采样时间。 为了满足各种调试需求,示波器的存储深度必须足够大,尤其是具备以下特性的信号:低频信号中带高频噪声,高频信号中有低频调制,变化过程缓慢的信号,多样本点统计分析等。例如电源纹波、噪声、软启动过程的分析测量,高低速率切换的通讯模块,此
[测试测量]
利用A设置示波器来完美测量抖动
对抖动完美测量的一半工作量都在于如何设置示波器。我们的目标是捕获并显示出信号在系统环境下的真实情况。因为每个实验室都有实时示波器,有必要知道如何去操作它们。抖动测量对环境特别敏感,所以要想办法针对各种抖动优化测试环境。 首先要选取具备合适带宽的设备。如果带宽太窄,测试得边沿速率就会很低。低的沿速率会将幅度噪声更多的转化为时域错误。但是,如果带块太大,也只会增加测试中的热噪声和散粒噪声从而提高噪底。在NRZ码流来讲,一个经验规则就是选取带宽为码率的1.8倍。 接下来,尽量提高采样率,避免发生由于欠采样而发生的混叠效应。理论上,采样速率至少是信号最高基频的两倍;实际上,捕获过程中的模拟信号整形和数据变换会留有余量,因
[测试测量]
电视机做简易示波器电路
利用一块附加的电路板,输入要观测的电信号,将输出信号接到电视机的视频输入接口,屏上就能显示电信号的波形。电路结构如图1,实际的电路兄图2。 振荡电路 用555时基电路产生水平同步信号和锯齿波信号,其输出周期tH=0.693x(Ra+Rb)C1,tL=0.693×RbC1。 输入电路 被观测信号接到输入端口,SW1是AC/DC选择开关,合上为直流,断开为交流;信号波形在电视屏上的位置由VR3调整,其调整范围与锯齿波信号电压范围(1/3Vcc~2/3Vcc)相似,C3、C4起稳定VR3端子电压的作用;波形振幅的大小由电位器VR4调节。 控制电路 把振荡器产生的锯齿波信号和输入信号送至比较器IC2a进行脉宽调制(PWM),生
[测试测量]
电视机做简易<font color='red'>示波器</font><font color='red'>电路</font>
力科宣布实时带宽60GHz的示波器技术演示成功
  力科公司今天宣布:第六代DBI技术成功地在纽约实验室演示。最新一代的技术使用新的前端芯片,可以提供更低的噪声以及更高的模拟带宽。新的半导体工艺可以使新的DBI技术提供更低的噪声,实时带宽高达60GHz,是目前业界已产品化的最高带宽示波器的2倍带宽。 目前已在客户端使用的最快带宽30GHz示波器是力科公司于2009年1月发布的。   应用新技术的产品研发工作已经展开,预计会在未来2年内推出基于新技术的新产品。 第一个应用这项最新技术的产品预计在2010年底发布,届时力科将提供4通道同时达到45GHz带宽的实时示波器。   “我们一直在持续关注高带宽示波器的市场需求”力科的董事长兼CEO,Tom Reslewic说道,
[测试测量]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved