一种光敏电阻提供负反馈实现线性响应

最新更新时间:2011-12-09来源: 互联网关键字:光敏  电阻  负反馈  线性响应 手机看文章 扫描二维码
随时随地手机看文章
增益受控放大电路位于正向放大通路,其增益随控制电压而改变。控制电压形成电路的基本部件是 AGC 检波器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。

  光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。

  图1显示了光耦合器的各个部件以及组装后的器件。光耦合器由一个圆柱形容器和另一端的一个光敏电阻组成。一个不透明的绝缘密封圈防止外部光线进入器件。容器的抛光金属内壁使得LED和光敏电阻之间的光损耗最小。

 

图1,带有HB LED和光敏电阻的金属管构成了光耦合器(左)。

  图1,带有HB LED和光敏电阻的金属管构成了光耦合器(左)。

  图2显示了使用LDR 07型光敏电阻的光耦合器的传递函数。该器件的输出电阻可在100Ω至10MΩ范围内变化,LED驱动电流范围是34mA~0.1μA.即便对于大振幅信号,光敏电阻的线性VA特征也使它可以作为控制元件,甚至在需要较大信号电压的情形中也可如此。图2还表明:你可以获得至少5个十倍程的线性输出电阻变化,并且最大LED驱动电流处于普通单片运算放大器的允许输出电流的限度内。

图2

  图2,光耦合器在反馈回路中的对数响应产生了线性放大器响应。

  这类放大器能控制相同范围内的系统的总放大率,并且没有额外的电流放大。由于光敏电阻的线性,因此得到的被处理信号的非线性失真程度几乎完全是由于运算放大器的非线性导致的。在正常工作范围内,系统的总线性会随输入信号振幅的增加而提高,这是因为负反馈数量会随信号振幅的增加而增加。

  图3显示了放大系统。基本的信号处理器件是反相运算放大器A1.它的反相连接使你能把从输入到输出的总放大率绝对值设为小于1的值,甚至能正确处理大于稳压输出值的输入信号振幅。光耦合器IC1是系统的核心部件,它的输出端光敏电阻作为A1的负反馈网络的可变零件。在无信号状况下,LED不照亮光敏电阻。因此它的电阻升至高值,这可导致DC击穿和A1的静态工作点的丢失。由于信号路径是AC耦合的,可防止DC误差值变得更大,因此这类状况原则上无害。但是,当输入端突然出现非零信号时,A1的开环放大倍数会把它放大,导致LED电流迅速上升。该作用几乎将逐步使光耦合器的输出电阻下降到一个足以恢复A1的DC工作点的值。AC耦合把该瞬态传递到输出端,并且它可能会在自适应放大器之后的信号处理电路中导致一些问题。为防止该效应,应该把反馈电阻的最大值限制在一个合理值。

自适应放大系统

  图3,自适应放大系统在反馈回路中设有光耦合器。

  缓冲器A2把经过整流二极管的非线性负载和输出信号隔离开,由此防止来自整流二极管的非线性负载使输出信号失真。二极管D3和D4补偿整流二极管D1和D2的阈值电压,其中包括它的温度系数。如果不需要把稳压输出电压振幅设为一个比R4中的偏置电流所设的阈值更小的值,那么可以用短路代替D3 和D4,并省略R7.另外可以在A2中设置大于1的电压放大率,来获得一个比R4中的偏置电流所设阈值更小的稳压输出振幅。只需插入一个与D3/D4对串联的额外电阻即可。

  整流器使用肖特基二极管,它们的阈值电压低于常规PN二极管。它们还具有很短的恢复时间,由此在很高的信号频率保持相同的整流效率。整流器可作为全波电压倍增器,甚至可为具有非对称波形的信号提供峰到峰整流。整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。

该LED电流控制电路有一个重要的优点:它允许几乎独立地调整上冲和释放时间。设计者可以通过可变电阻P1调整上冲时间,必要时使用更高值,此外还可以用P2调整释放时间。使用的光敏电阻具有相当好的响应速度,并且对于多数实际要求而言,照明逐步变化时引入的延迟可以接受。

  图4 显示了自适应放大系统的总响应。对于低于70 μV 有效值直到高于1.2V 有效值的输入信号电压,即超过85 dB的范围内,输出信号恒定在350 mV 有效值 ±1 dB.无信号输出噪声小于6 mV 有效值,因此在最坏情形中开始稳压时,得到的SNR(即被处理信号的动态范围)优于20 dB,并且随着输入信号电平的增加,它会成比例地改善。

图4,放大系统在 0.1 mV至1 V 有效值输入范围内具有恒定输出。

  图4,放大系统在 0.1 mV至1 V 有效值输入范围内具有恒定输出。

  1 kHz时的输出信号谐波分析带来了更高的谐波,对于所有接近200 μV 有效值的输入电压,振幅小于A1的噪声电平,对于接近1.5V 有效值的输入电压,则低于275 dB.非线性失真只是在较大的输入振幅超出系统的稳压范围时才变得明显,在2.5V 有效值输入电压时,使第二谐波增至-45 dB,第三谐波增至-40 dB.

  在AGC的量程限度内,总传递线性会随输入信号振幅的增加而提高,这是因为送往A1的负反馈的程度会随输入信号振幅一起增加。在P1值为10 kΩ,P2为1 MΩ,并且输入信号在100 μV至50 mV 有效值之间逐步变化时,上冲和释放时间分别约为0.2秒和2秒。从1 kHz(输入过驱超过10V 有效值)到完全的无信号灵敏度的恢复时间短于2分钟。通过改变C4、C5、P1和P2的值,可以在很宽的范围内调节所有这些时间间隔,P1设置上冲时间,P2设置释放时间。

   本设计遵循的关键参数是它的线性。由于光敏电阻的线性,以及非线性整流器负载与输出端的隔离,因此增益控制引入的非线性可忽略不计。所以从原理来看,A1自身就决定了系统的总线性。

关键字:光敏  电阻  负反馈  线性响应 编辑:神话 引用地址:一种光敏电阻提供负反馈实现线性响应

上一篇:通过质询-响应认证实现安全门禁控制
下一篇:雷达回波模拟器中频部分的实现

推荐阅读最新更新时间:2023-10-12 20:33

基于铂电阻的数字温度测量系统设计
0 引言 在某企业开发的加工控制系统中, 温度范围是-100℃~600℃,测量误差小于1%。针对本系统所需的温度测量要求,选用了精度高的铂电阻作为温度传感器,模数转换使用MSP430F149内部的12位分辨率的ADC模块。温度测量系统具有低功耗、结构简单,使用方便,可以扩展成多路温度测量等优点。 1 硬件设计 根据测试系统所要求的测量范围,选用的传感器为铂电阻PT100,Pt100的测量范围是-200到850,从PT100的分度表可以计算出线性度为,无法达到测量精度的要求,所以需要一个线性补偿的信号调理电路,线性补偿电路通过采用XTR105芯片,通过温度测量范围匹配电阻,从而达到设计要求。AD转换用MSP430F
[测试测量]
基于铂<font color='red'>电阻</font>的数字温度测量系统设计
用于高速取样和保持的高输入电阻宽带缓冲放大器
电路 的功能 在高速取样和保持电路中,因为使用容量小的保持 电容 器,所以必须选用输入阻抗高转换速度快的缓冲放大器。如果用OP放大器进行缓冲,则要进行相位补偿,因而造成高频性能下降,稳定时间加长。 本电路的输出级采用推挽式,输入阻抗即使很低,也能减少波形失真。 电路工作原理 把FET源极输出器的负载作为TT1的恒流负载,用R2确定工作电流,二极管D2、D3完成输出电路的置偏并兼作温度补偿。输出级为高频晶体管构成的互补输出电路,电流的释放和吸收能力相同。 齐纳二极管D4、D5用来减少TT3、TT4的消耗功率,如电路在低 电源 电压条件下工作,可把这两个二极管去掉。 调整 输入
[模拟电子]
印制板的绝缘电阻测试
  大多数电气产品中都会用到印制板( PCB )。如果某块PCB具有低 绝缘电阻 (IR),则会大大降低印制板上电路的性能。影响印制板表面电阻的因素包括印制板材料、有无 涂层 (例如防焊漆或保形涂层),以及电路板的清洁。温度和相对湿度也会影响表面电阻。   为了测试绝缘电阻,会在印制板上制作特殊的测试模板,被称为是样板。电阻典型值范围为107Ω~1016Ω,利用皮安计和电压源测量。测试板通常有几个接线端子,因此测试系统就包括用来将皮安计和电压源切换至端子的扫描卡。   图1中为测试一块5端子(W)测试板的系统简图。在该电路中,Keithley 7011- S型1×10多路选通卡被用来将电压源连接到端子1和5
[测试测量]
印制板的绝缘<font color='red'>电阻</font>测试
Vishay推出新型1A电流整合功率光敏可控硅
2008 年 9 月 5 日, Vishay Intertechnology, Inc. 推出新款可输出 1A 电流来驱动电阻及电感负载的整合功率光敏可控硅 --- VO3526 ,从而拓宽了其光电子产品系列。 采用 16 引脚 DIP 封装的 VO3526 包含 GaAs 红外 LED ,该 LED 可光耦合到单片光敏非过零 TRIAC 检测器芯片上,从而可启动整合功率 TRIAC 。由于消除了对外部功率 TRIAC 的需求,该器件可降低设计成本并节省板面空间。 额定阻断电压为 600V 的该功率
[模拟电子]
Vishay推出新型1A电流整合功率<font color='red'>光敏</font>可控硅
STM32f103的电阻触摸屏的五点校正算法
由于电阻式触摸屏就是一种传感器,它利用压力感应进行控制,将矩形区域中触摸点(X,Y)的物理位置转换为代表 X坐标和 Y 坐标的电压。这里先引入两个概念,物理坐标和逻辑坐标。物理坐标指触摸屏上点的实际位置,通常以液晶上点的个数来度量。逻辑坐标指这点被触摸时A/D 转换后的坐标值。如图1,我们假定液晶最左下角为坐标轴原点A ,在液晶上任取一点B (十字线交叉中心),B 在X 方向距离A 10 个点,在Y 方向距离A20 个点,则这点的物理坐标为(10,20)。如果我们触摸这一点时得到的X 向A/D 转换值为100,Y 向A/D 转换值为200,则这点的逻辑坐标为(100,200)。 常用的电阻式触摸屏矫正方法有两点校准法和三点校准法
[单片机]
STM32f103的<font color='red'>电阻</font>触摸屏的五点校正算法
热敏电阻 温度传感器选用原则
热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。
[模拟电子]
怎么使用万用表判断电阻的好与坏
  ①利用万用表选择合适的挡位。为了提高测量精度,应根据电阻标称值的大小选择挡位。应使指针的指示值尽可能落到刻度的中段位置(即全刻度起始的20%~80%弧度范围内),以使测量数据更准确。   根据电阻的标称读取标称阻值。打开万用表挡位开关,并根据电阻的标称阻值将万用表调到合适的欧姆挡位,如图152所示。   ②利用万用表校零。   红、黑表笔短接,调整微调旋钮,使万用表指针指向0Ω的位置,然后再进行测试。   使用指针式万用表检测时,还需要执行将表针校(调)零这一关键步骤,方法是将万用表置于某一欧姆挡后,红、黑表笔短接,调整微调旋钮,使万用表指针指向0Ω的位置,然后再进行测试。   注意:每选择一次量程,都需要重新进行
[测试测量]
怎么使用万用表判断<font color='red'>电阻</font>的好与坏
电阻值标识方法及标称阻值系列规范
电阻,物质对电流的阻碍作用就叫该物质的电阻。电阻小的物质称为电导体,简称导体。电阻大的物质称为电绝缘体,简称绝缘体。
[模拟电子]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved