基于MCU+CPLD变压器测试系统的设计与实现

最新更新时间:2012-03-28来源: 互联网关键字:MCU  CPLD  变压器测试 手机看文章 扫描二维码
随时随地手机看文章

1 引言

  BX型信号变压器,BG型轨道变压器和ZG型硅整流器作为铁路信号电器设备的前端,其工作的稳定性、准确性直接关系到行车安全,变压器的可靠检测是严抓质量的第一步,对于生产厂家而言,测试流程不允许抽样,且测试结果应留档。本套测试系统用来测试铁路变压器的各种要求参数,包括原边空载电流、次边空载电压、次边带载电压电流,变压器绝缘电阻、原边电压频率,测量结果精度要求3%,测试系统分为上下位机两大部分,下位机运用智能仪表的设计思想,在MCU和CPLD控制基础上对各种要求测试参数分别进行自动测试,上位机上采用VC++6.0编写软件实现串口通讯,归类统计并判断是否合格,存储打印结果,系统满足操作简单可靠,提高效率,减少误差。

  2 功能介绍

  下位机以80C196KC作为控制中枢,其主程序框图见图1,变压器接入测试仪测试端后接通电源,打开测试仪,测试仪首先进行初始化,包括PSD,全局变量、串口、中断8253计数器,LCD等的初始化,然后进行自检,包括检查测试仪内部电路是否正常,是否响铃(由变压器输入端电压接反引起的报警),连续检测8个周期的输入端电压并判断输入电源是否接好,电压是否正常,通讯是否正常,自检过程是串级检测(任一项自检不合格就闪灯报警),MCU根据键入值显示工作状态,并调用子程序处理,人工输入变压器型号,监测仪进入设置状态,控制相应继电器动作,将该变压器所有副边绕组接入测试端,并选择合适量程,进入测试状态,测完参数后MCU进行处理并显示相应变压器测试结果,进入判断状态,判断变压器是否合格,不合格则触发蜂鸣器报警,根据要求进入通讯状态,向上位机发送和接收数据。

  

  本设计采用MAX7000系列的EPM7128两块,其中第一块CPLD(1)的主要功能如下:

  (1)与A/D芯片(MAX125)相应片脚连接,控制模/数转换并读入其结果,MAX125为并行输出,是以字进行操作的,所以一次要读14位,用两个字节锁存。

  (2)通过系统总线,将A/D转换结果传给80C196进行处理。

  (3)将80C196处理过的需显示的数据缓冲,产生LCD的数据(8位)总线驱动。

  (4)键盘响应。

  (5)JTAG功能。

  第二块CPLD(简称CPLD(2))依据MCU发出的指令或输入型号译码后驱动控制与该型号二次绕组对应的继电器吸合与释放动作,并选择量程。由于继电器没有地址,所有操作他的数据必须同时发送,即使只改变一个继电器的状态,仍然要把没有改变的继电器的数据同时送给CPLD锁存,所以译码是必需的。

  CPLD的功能结构示意图如图2所示,可以认为,CPLD在下位机中起着重要的关联作用,一方面,他与MCU相互通讯,并受MCU控制,另一方面,CPLD又执行着对前端电路、键盘、LCD和继电器板等的操作任务,所以从系统总体的角度出发,CPLD完成一些接口功能。

  

  3 频率跟踪测量技术

  本系统需要对变压器的电压、电流和频率等进行交流采样,而交流采样应用成功与否,频率的准确测量是一个关键,因为我们是取8个正常采样周期的平均电压、电流值,而且由于不同型号变压器的输出频率不一,本身也需要测量频率。响应时间、测量精度以及硬件要求是测频方法的主要指标。

  我们可以定量分析一下由电压信号频率波动所引起的电压信号有效值误差的大小。

  

  一般工频频率的波动常常要到0.1Hz以上,即δf》0.1/50=0.5%,则对电压信号有效值的影响要达到0.25%,所以应实现采样频率对工频频率的在线自动跟踪,以保证测量精度。

  考虑到系统的频率不是变化很快,要实现采样频率随系统工频的变化而实时调整,可先测得系统的频率前一周期对应的计数值Tc(以单片机系统的定时器时钟周期为单位),然后根据每周波采样点数(N),适时计算出每一采样间隔计数值Tsj。

  间隔计数值:

  Tsj=Tc/N (2)

  则以Tsj为周期进行采样,即可实现采样频率的实时跟踪,保证了交流等间隔采样,为实现这一过程,通常采用的电路结构为:来自电压(流)互感器的电压(流)经过低通滤波器和跟随器,经过零比较器(可用LM339)整形成方波,经光耦(如4N35)送到80C196KC的高速输入接口 HS1.0利用方波的上升沿触发高速输入中断,侧得每个工频周期计数值Tc。单片机由式(2)计算得到采样间隔时间Tsj。以Tsj为时间间隔,设置软件定时器中断,在软件定时器中断中进行采样间隔设置,主程序根据其确定启动A/D的时间间隔,完成周期误差的大大减少和采样频率的实时跟踪。

4 CPLD模块设计

  明确了CPLD的主要作用后,我们在Max+Plus II软件上用VHDL语言分别实现这些模块功能,设计包括4个阶段:设计输入、设计处理、设计验证和器件编程。VHDL主要用于描述数字系统的结构、行为、功能和接口。非常适用于可编程逻辑芯片的应用设计。

  4.1 主要模块进程

  系统检测变压器时,MCU在正常初始化后,有键盘输入时会要求CPLD运行按键响应进程;CPLD根据所键入型号运行继电器控制进程,操作继电器板,并上传操作结果,MCU在认为前述操作正常后,才会要求CPLD启动对A/D控制的进程,模/数转换结果会送给MCU;MCU对转换结果进行处理后,又会要求CPLD运行显示进程,显示结果LCD上。

  4.2 仿真

  以读A/D结果(ReadOperation)进程为例进行仿真。

  ——进程名称:ReadOperation

  ——敏感变量,RD

  ——输出变量,DataBusIn(送到数据总线上)

  ——目的:读操作

  ReadOperation:process(RD,Enlcd,En125Low,En125High,CSIF,CSIM)

  需要说明的是,信号变量在仿真时需声明其初始值,本读操作进程中的信号变量自会有其他进程(如片选进程)为其赋值,“&”作为连接运算符,可将多个对象或矢量连接成位数更大的矢量,对ReadOperation进程编译仿真的波形图如图3所示。

  

  5 结语

  经过现场试用得到实验测试数据,表1列出3台BX1-34型变压器的部分参数测试结果,其中I次空流代表原边空载电流,空压II12指二次绕组1和2端的空载电压,其他类推,II次空压为二次绕组的总空载电压,满载电压指在二次绕组串接8Ω电阻时的电压值。

  

  结果满足《信号维护规则)中对变压器“输入额定电压,二次端子电压空载时其误差不大于端子额定电压值的10%;容量为30-60VA的变压器满载时,其二次端子电压不小于端子额定电压值的85%”的规定。

  本次开发综合考虑了MCU和CPLD的相互作用,采用了交流采样技术,认真考虑VHDL进程并行和CPLD的结构特点,并应用电路简化的几种技巧与方法,充分利用CPLD的硬件资源优化电路,实现系统对稳定性,精确度等方面的要求。

关键字:MCU  CPLD  变压器测试 编辑:神话 引用地址:基于MCU+CPLD变压器测试系统的设计与实现

上一篇:单片机关键技术基础详解(五)
下一篇:基于GPRS和单片机的彩信报警系统设计方案

推荐阅读最新更新时间:2023-10-12 20:38

基于单片机的高精度水位监控仪的设计
1 引言 水位监控仪广泛应用于水利、石油、化工、冶金、电力等领域的自动检测和控制系统中。目前有些水位监控仪在运行过程中存在着一些问题,如:系统不稳定、抗干扰能力差、精度低、输出控制或显示信号不满足要求、现场更改程序或程序升级麻烦及通信能力差等。本文设计的智能水位监控仪是吸收了国内外最新智能化仪表的设计经验,采用工业控制单片机,集水位采集、存储、显示及远程联网于一体,适用于各种液位测量及闸门开度的测量。 2 系统硬件总体设计 本系统硬件部分主要考虑的功能有:模拟量的变换;模拟量的采集;高精度16位模数转换器AD7705在系统中的应用;精确时钟芯片DS1302的应用;四路继电器报警,继电器驱动芯片采用ULN2003;4~20mA电流环
[单片机]
基于<font color='red'>单片机</font>的高精度水位监控仪的设计
初识MSP430F5438A单片机
德州仪器MSP430系列超低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用的 需要。该架构与多种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优 选择。该器件 具有 一个强大的 16 位 RISC CPU,使用 16 位寄存器以及常数发生器,以便获得最高编码效率。该数控振荡器 (DCO) 可在 3.5µs(典型值)内从低功率模式唤醒至激活模式。 MSP430F543xA 和 MSP430F541xA 系列微控制器配置包括三个 16 位定时器、一个高性能 12 位 ADC、多达四个通用串行通信接口 (USCI)、一个硬件乘法器、DMA、具有报警功能的 RTC 模块和多达 87 个 I/O 引脚。
[单片机]
初识MSP430F5438A<font color='red'>单片机</font>
基于CH371的实用USB接口设计
通用串行总线USB(Universal Serial Bus)是由Intel、Compaq、Digital、IBM、Microsoft、NEC、Nerthern Telecom七家世界著名的计算机和通信公司共同推出的新一代总线接口标准。作为一种PC机与外设之间的高速通信接口,USB具有连接灵活、可热插拔、一种接口适合多种设备、速度高(USB1.1协议支持12Mb/s,USB2.0协议支持480Mb/s)、自动配置、无需定位及运行安装程序、可为外设提供电源、低功耗、低成本、高可靠性等优点,因而在数码相机、便携式仪器、便携式存储设备等产品中广泛应用。 但是,USB接口的开发一般要求设计人员对USB的标准、Firmware(固件)编程
[嵌入式]
MCS-51单片机底层工作原理分析2——总线结构
了解了单片机内部的大致工作原理之后,我们或许对单片机如何读取指令代码和数据的过程存在一定的疑问,这就是总线系统。51单片机内部有三大块总线系统AB,CB,DB即地址总线,控制总线和数据总线。51系统式的存储形式是采用普林斯顿结构(冯 诺依曼结构)的,即数据和代码存放在重叠地址通过不同的控制总线控制不懂的物理存储位置读写。冯 诺依曼结构代码和数据是公用数据和地址端口的所以在执行程序的时候必须先读取指令,然后再读取数据这相对于哈弗结构来说,在一定程度上限制了程序的执行速度。借助下图可以适当说明一下冯诺依曼结构程序和数据的存储方式。外部ROM和RAM都是通过P2和P0作为地址输出,P0作为数据或者代码输入。通过CB开控制是读取代码
[单片机]
STM32外设驱动库分析及如何实现
一、如何控制单片机? 单片机的内存映射图解析 这里以STM32F429芯片为例,讲解下单片机芯片内存映射图。从此图中可以看到芯片的外设被分配了512M的空间,然而真正的外设其实没有使用到512M的内存空间。 然后我们操作外设时,只需要操作它对应的内存地址即可。更加详细的外设内存地址,可以参考芯片的用户手册(不是数据手册)的Memory map章节。 因为单片机是将外设映射到内存地址上,所以我们可以像操作内存一样来操作外设(写/读)。 我们在操作内存时是通过地址来进行操作的,由于单片机已经将外设与内存进行了映射,所以我们在操作单片机外设时只需要操作外设映射的内存地址就行。 内存如何操作? 在C语言中操作内存,我们
[单片机]
STM32外设驱动库分析及如何实现
基于RS232串口实现PIC单片机下位机与QT上位机通信
简介:上位机通过RS232串口发送消息给下位机,下位机收到消息并做出2个动作: (1)LED灯变化。 (2)将消息通过RS232串口返回给上位机; 上位机收到消息后将内容显示在UI界面上。 windows7 64位环境完整源码及源程序打包下载: https://download.csdn.net/download/robin_xx/10791050 主要代码粘贴如下: PIC单片机下位机源程序: #include pic.h __CONFIG(HS&WDTDIS&LVPDIS); unsigned char i=0; //void interrupt ISR(void); void interrup
[单片机]
基于RS232串口实现PIC<font color='red'>单片机</font>下位机与QT上位机通信
基于单片机的锂电池充电器设计
  1 引言   随着微电子技术的快速发展,使得各种各样的电子产品不断的涌现,并朝着便携和小型轻量化的趋势发展,为了能够更加有效地使用这些电子产品,可充电电池得到快速的发展。常见的可充电电池包括镍氢电池、镍镉电池、锂电池和聚合物电池等。其中,锂电池以其高的能量密度、稳定的放电特性、无记忆效应和使用寿命长等优点得到广泛的应用。目前绝大多数的手机、数码相机等均使用锂电池。电池的使用寿命和单次循环使用时间与充电器维护过程和使用情况密切相关。一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当而造成的记忆效应,即电池活性衰退现象。   2 锂电池的主要特点   1)高能量密度,锂
[单片机]
基于<font color='red'>单片机</font>的锂电池充电器设计
基于AT89C52单片机实时时钟程序编写
#include‘reg52.h’ //包含单片机寄存器的头文件 #include‘intrins.h’ //包含_nop_()的头文件 sbit RS=P2^0; //LCD读写选择位 sbit RW=P2^1; //LCD读写选择位 sbit E=P2^2; //LCD使能端 sbit BF=P0^7; //忙信号 sbit SCLK=P1^0; //1302时钟输出端 sbit DATA=P1^1; //1302数据端 sbit RST=P1^2; //1302复位端 unsigned char code digit[]=“0123456789”; void delay1ms(unsigned int n) { un
[单片机]
基于AT89C52<font color='red'>单片机</font>实时时钟程序编写
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved