引言
开关电源具有效率高、重量轻、体积小,稳压范围宽等突出优点,从20世纪中期问世以来,发展极其迅猛,在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。提高电路的集成化是开关电源的追求之一,对中小功率开关电源来说是实现单片集成化。开关集成稳压器是指将控制电路、功率开关管和保护电路等集成在一个芯片内,而由开关集成稳压器构成的开关电源就称之为单片开关电源。美国PI公司的单片开关电源系列是其显著的代表。
l 用TOPswitch—GX设计的250W开关电源
TOPSwitch—GX设计的250W开关电源电路如图1所示。直流电压经变压器的原边加到TOPSwitch—GX的漏极D;频率选择端F和极限电流设定端X与源极S相连,则该两端的功能都没用,即不从外部设定极限电流,内部自动设定自保护电流ILIMIT,开关工作频率为132K;控制极和光耦LTV817相连,接受反馈信号以实现对内部集成的高压功率MOS管占空比的控制;线路检测端L通过一2MΩ的电阻和直流高压输入的正端相连以实现过压、欠压线电压前馈的线电压检测。整个电路为单端反激式,TOPSwitch—GX为开关集成稳压器,反馈电路主要有光耦LTV817和与之串连的三个稳压二极管构成。电容C1为高频滤波电容;瞬态电压抑制器P6KE200和超快恢复二极管BYV26C构成钳位电路,并在其中串入RC吸收电路(由R2,R3和C6组成),这样除了可以吸收部分漏感中的能量以外,还可将电压钳位在200V,可使开关电源在启动或过载的情况下TOPSwitch—GX内部集成MOS管的漏极电压不超过700V;光耦LTV817和稳压二极管(VR2~VR4)构成反馈电路,R6是光耦中LED的限流电阻,它还决定控制环路的增益,输出电压变化时则流过光耦中LED的电流相应变化,从而光送到芯片控制极C的电流也相应变化,芯片内部据此产么的PWM信号占空比发生变化最终使输出电压稳定;高频变压器T1的副边输出经过MURl640CT整流和C9,C10和C11滤波,再经过磁珠L1和C12滤掉开关噪声后,得到输出电压;VD4和C14构成软启动电路。
2 高频变压器设计
对于PI公司的单片开关电源来说,高频变压器采用PI公司相关的开关电源计算机辅助设计软件来设计。本方案采用的是PI Expert 7.0专家系统。图2是用该软件设计的变压器的结构。
3 测试结果
该电源输出功率为250W,效率至少为85%,负载调整率为±5%,纹波电压峰一峰值小于100mV,空载功耗不大于1.4W。
本方案选用TOP249Y设计,输出功率250W时工作于其上限功率,故要保持良好的散热条件(芯片温度要保持在110℃以下),也可用TOP250Y替换该元件。
4 结束语
单片开关电源具有单片集成化、最简外围电路、最佳性能指标、能以无工频变压器电器实现完全隔离等显著优点,是我们设计290W以下开关电源的理想选择。
关键字:大功率 单片开关电源
编辑:神话 引用地址:一种大功率单片开关电源的设计
推荐阅读最新更新时间:2023-10-13 10:57
基于TOPwitchⅡ的单片开关电源设计与实现
传统的线性稳压 电源 有着输出电压稳定度高,纹渡电压小的优点,是一种极其可靠的 电源 。但其缺点是电源效率低,需要使用笨重庞大的工频变压器。为了找到一种新型的电源,人们
20世纪60年代发明了自激振荡推挽晶体管单变压器和直流式推挽双变压器,从而实现了高频转换 控制 电路 ,并由此出现了晶闸管(旧称可控硅)相位 控制 式 开关 电源,而且用分离元件制成了 开关 电源,但终因技术问题,效率不高、开关频率很低,而且 电路 复杂、调试困难,难于推广,其应用也受到极大的限制。直到70年代后期,随着 集成电路 设计与制作技术的进步,大功率硅晶体管耐压提高、二极管反向恢复时间缩短,各种开关电源专用芯片大量问世,最终去掉了工频变压器和低频滤
[电源管理]
简述:大功率LED优点与不足
大功率 LED 是达到高光通量的最重要手段之一。用大功率 LED照明 有很多优点,也有缺点。如何用好大功率LED是关键,同时,本文对于大功率LED照明产品与传统照明产品做了比较,也对高光通LED在照明领域的应用进行了研讨。
一、 LED的发展史和应用潜力LED从诞生至今以每10年亮度提高30倍,价格下降10倍的“Haitz”定律快速发展。普通高亮度白光led目前实验室里已经达到100 lm/W的水平,50 lm/W的大功率白光LED也已进入商业化。在单色光方面,红光、黄光、蓝光、绿光的光效也不断被刷新记录,LED作为新型光源应用范围越来越广,也逐渐引起了更多人的关注和期望。
目前LED应用呈多元化分布
[电源管理]
大功率开关电源降低功耗的技术方法
随着能源效率和环保的日益重要,人们对开关电源待机效率期望越来越高,客户要求电源制造商提供的电源产品能满足BLUEANGEL,ENERGYSTAR,ENERGY2000等绿色能源标准,而欧盟对开关电源的要求是:到2005年,额定功率为0.3W~15W,15W~50W和50W~75W的开关电源,待机功耗需分别小于0.3W,0.5W和0.75W。
目前大多数开关电源由额定负载转入轻载和待机状态时,电源效率急剧下降,待机效率不能满足要求。这就给电源设计工程师们提出了新的挑战。
开关电源功耗分析
要减小开关电源待机损耗,提高待机效率,首先要分析开关电源损耗的构成。以反激式电源为例,其工作损耗主要表现为:MOSFET导通损耗
[电源管理]
深度了解新颖大功率测试电源 全全掌控游戏规则!
提起输出10A以上大功率可调稳压电源,凡是有过接触的读者都会联想起:巨大的带抽头的电源变压器、体积很大的散热器,多个大功率调整管固定其上,至少lOW以上的仪表风机不停转动为之散热、加上密布元件的控制板,足以体现出其结构复杂程度。颇为壮观的仪器。很多的开关、电位器、复杂的设定和LED或LCD显示装置似乎很有高科技的味道。 但从基本结构上来看,串联稳压电路实在缺少创意。大型电源上仍然为一品当朝。其效率低、调整管功耗大的缺点。至今为人们所垢病。 能不能采用效率高、管耗小的高频开关电源呢?答案是在很多场合,如无刷电机检测方面。根本无法正常使用,原因很简单,开关电源输出并不纯净,在阻性负载时并无影响,但接PWM方式工作的脉动很大的负载时就力
[电源管理]
大功率谐振过渡软开关技术变频器研究(1)
摘要:对传统硬开关技术大功率变频器的特点,目前大功率变频器研究中存在的问题,大功率谐振过渡软开关变频器的研究目标,降低功率器件开关损耗的途径,软开关技术变频器拟实现的有关性能指标等方面的问题进行了概述。
关键词:大功率变频器;谐振过渡;软开关
在电力传动领域里,随着电力电子技术的不断完善和工业领域对大功率,高质量变频器日益迫切的需求,大功率变频装置的研究成为科研、开发的热点,也是电力电子变换技术在电力驱动方面科研成果转化的重点之一。
1 大功率变频器的特点
对于传统的硬开关技术变频器,由于功率器件的发展,已经形成了比较成熟的电路和控制方法。但对于大功率变频装置来说,有着它自己的
[电源管理]
基于LLC的大功率智能充电器设计方案
充电器与人们的日常生活密切相关,充电器充电性能的好坏与被充电池的使用寿命、充电效率等息息相关。 由于外界温度变化,电网电压波动,因而大大降低了充电器充电性能的稳定性,这就需要有一种能自我调节的系统,遇到外界的干扰能实时做出回应,保证充电的稳定性,不损坏被充电的电池。 智能控制在此能提供一种很好的解决方案。电源行业已经开始在其产品中运用智能控制,通过单片机的编程对过压、过流情况做出判断,为电池提供保护。 LLC 谐振变换器在充电器的运用也是越来越多,LLC 谐振变换器的拓扑本身具有一些优越的性能,可以实现原边开关管在全负载下的零电压软开关( ZVS ( Zero VoltageSwitch) ) ,副边整流二极管电压应力低,因此
[电源管理]
一种低漂移对称大功率高压直流变换器的设计
1 引言 在UPS或DC/AC设计中,需将输入220 V交流电压或蓄电池电压转换为±375 V的直流电压,然后交流变换器将直流电压变换为220 V/380 V,50 Hz的正弦交流电压,这种交流电压往往会产生直流分量。交流电压的直流分量对感性负载和变换器本身具有极大的危害;它一方面容易使磁性器件产生偏磁饱和,另一方面可使变换器本身过载损坏。这种直流分量在10 s内应小于均方根值的0.1%,这就要求变换器的输入直流电压不对称偏差不大于交流输出有效值的0.314%。为此,需设计一个低漂移、高度对称的高压大功率直流升压变换器。 2 升压变换器方案选择 实现高频大功率升压变换器的典型方法有推挽、半桥、全桥和Boost变换等
[电源管理]
线性大功率LED驱动IC选型
LED驱动IC应从,输入电压范围;输出电流要求;串接LED个数需要;是否有灰度表现要求;是否需要信号级联传递;价格;交货期和封装适合度等考虑。
AMC7135 是最早得到广泛应用的线性LED驱动器之一,特点是压差低只有200mV,特别符合锂电池和4V铅酸电池驱动单颗LED,广泛应用矿灯、手电筒、应急灯等产品。20-400mA固定式电流市场上都可以找到。
可供应的厂家有,台湾富微、广鹏科技、台晶光电、杭州士兰、深圳泉芯科技等等公司。
奥地利微电子AS3691是一款很据代表性的线性LED大尺寸LCD背光驱动IC,将线性IC功耗设计的一样出色;反馈采样自动适应LED VF值;4路LED恒流输出,
[电源管理]