非接触式温度传感器的选择和使用

最新更新时间:2013-11-24来源: 互联网关键字:非接触式  温度传感器 手机看文章 扫描二维码
随时随地手机看文章
在选择和使用非接触式温度传感器时,将会遇到三大难题: 

● 填充视场 
● 克服物体透明度问题 
● 实现正确的发射率调整 

视场 物体的热辐射“体现”出了其表面的温度,这一点与无线电信标非常相似。不同之处在于在IRT测量中,热辐射来自于物体表面上的一个已知大小的斑点。您需要捕获所有辐射,而不能让任何辐射在沿途上被阻隔。 

在一段特定距离上的斑点直径(也就是一段给定距离上的“视锥”的横截面面积)由器件的光学特性来决定。一般来说,距传感器越远,斑点的直径就越大。斑点尺寸常常用一个比值来表示,比如50:1或10:1。这意味着最小的目标斑点直径为传感器至感兴趣物体间距离的1/50或1/10(图2)。

 
图2、在一段给定距离上的斑点直径由传感器的光学特性来决定,并被定义为一个比值; 
通常,目标距传感器越远,斑点就越大。

如果物体具有一个圆形横截面(图3),而且唯一的视野沿着直径,则需确定所测量的严重弯曲的表面的大小是被观察物体的一小部分。换句话说就是斑点直径应为曲面有效直径的25%或更小。

 
图3、当不得不在曲面上进行测量时, 
应确定斑点直径不大于曲面有效直径的25%。

还要保证视锥角内无障碍,否则检测器将无法接收到进行有效测量所需的全部辐射。如果位置斑点大于物体,或者视锥角被部分阻断,则测得的温度将低于真实温度。 

如果不能确实地填充斑点直径或保持视锥的畅通,则不妨考虑采用双色或比例式IRT。这样做可能会使准确度稍有损失,还可能影响响应速度,费用支出也将会小幅增加,但是,这些器件是专用于视距路径被部分阻塞、视锥发生改变,或者有物体移入和移出视野的场合中的。它们对于发射率比值的变化非常敏感,不过这不在本文的讨论范围之内。 

透明度问题 大多数(但不是全部)有机材料和建筑材料(比如砖块、木材、金属、沥青、岩石和矿石等)都是不透明的。但是,许多塑料在IR光谱中是半透明的,因此需要采用特殊的波段,以使相其对于传感器来说是基本不透明。Ircon公司提供了一些有关塑料和玻璃测量的非常有益的应用指南,可登录Ircon公司 网址浏览。 

其他会带来透明度问题的物质包括半导体材料(硅、砷化镓)、某些涂料、一些光学材料(如氯化银、蓝宝石、石英、氯化钠、锗)以及许多特殊的晶体产品。 

发射率校正 如果有人试图告诉您这是一个微不足道的问题,请千万不要信以为真。虽然这并非小事一桩,但一旦将它分解成三种您有可能遇到的情形,那么处理起来就变得相当容易了: 

● 感兴趣的物体处于或非常接近周围环境温度。 
● 物体的温度高于环境温度。 
● 物体的温度低于环境温度。 

物体的光学性质(发射率为其中之一)在这里开始起作用。如果目标是半透明的,那么您将有可能需要帮助;如果它是不透明的,则或许您可以自行处理发射率的校正工作。我们来看一下各种场合的具体实例。 

场合一 如果物体的温度与其环境温度大致相同,而且其表面不是镜面的,则其表面反射率将对发射率起到补偿作用,而且无需进行发射率校正。实施发射率校正将得到一个高于真实温度的温度读数。 

场合二 如果物体的温度高于其环境温度,则需要进行发射率校正以获得准确的温度读数。发射率会是一种难以捉摸且变化不定的光学性质,但它通常只在表面上的某种东西有所改变时才会发生变化,比如出现焦化、氧化,或者熔化。 

如果把发射率控制在1.00,则可在该场合中获得“辐射亮度温度”。尽管该数值将低于真实温度,但在物体的发射率(虽然是未知的)未发生非常大的变化的情况下,它是可重复的。那么,多大才是“非常大”呢?这个问题提得很好,由于篇幅所限,这里无法回答,不过,如果物体在视觉上没有变化,则光谱发射率未发生改变的可能性相当大。不能保证,只是存在可能性。 

场合三 这是一种难对付的情形。当目标的温度低于环境温度时,最简单易行的解决方案就是变更测量的位置。例如,如果目标的温度低于它正在进入的烤箱或熔炉的温度,不要试图在入口处或内部(当它正在加热时)测量其温度。应将温度测量的位置移至出口处,在物体完成了其加热程序并离开烤箱时(此刻其温度有可能高于其环境温度)进行测量。 

该场合具有一种“隐性”形式,就是当物体受到阳光照射、或者具有很高的温度(它仍有可能低于环境温度)或亮度水平的时候。可以通过在表面上投射临时性的阴影、并把IRT对准该阴影的方法来对这些条件进行测试。 

在诸如金属、玻璃、塑料等温度较低的网状产品进入烘箱或熔炉的加工生产线上,应当尝试把IRT对准在产品与其所经过的辊子之间形成的“楔形物”(图4),特别是在其改变方向的情况下(即具有一个25%或更大的包角)。这可能是一种“实际场合”,因为辊子的表面通常具有反射性,并生成物体的镜像。实际上,它被某些与其自身温度相近的物体所包围。

newmaker.com 
图4、针对因目标的温度低于环境温度而引起的发射率问题(如对于网状产品), 
一种解决方案是把IRT对准由辊子和产品所形成的“楔形物”。

给读者的建议 

市面上有许多性能出色的非接触式温度传感器,生产厂商均极力劝说您购买其产品。必需牢记不要以为只要温度传感器接通,就可以指望它们执行您所分配的工作。必须为它们提供最佳的工作环境,或者对那些并非最佳的工作环境进行校正。
关键字:非接触式  温度传感器 编辑:神话 引用地址:非接触式温度传感器的选择和使用

上一篇:陶瓷传感器在汽车电子中的的应用及发展趋势
下一篇:声纹鉴定自动识别系统介绍

推荐阅读最新更新时间:2023-10-12 20:53

新型补偿式温度巡检电路设计 提高温度检测精度
介绍了一种新型的补偿式温度巡检电路,该电路通过巧妙的设计克服了传统三线制检测方法中测量导线对测量结果的影响,提高了温度检测精度。同时该电路通过分组共享的方式完成对多路温度信号的巡检,降低了温度巡检电路的复杂度和成本。试验数据验证了该检测电路的精确性和实用性。 1引言 温度的检测是通过检测温度传感器的电阻值并对阻值与温度曲线关系进行换算来实现的。为了降低温度巡检电路测量复杂度,工程中常采用三线制测量方法进行温度测量。测量电路示意图如图1所示。 Rx1~RxN分别为温度传感器1~N的电阻值。以Rx1测量为例,设连接温度传感器1的三根导线电阻均为RL1,当模拟开关K1闭合时,有: 由式(1)可以看出,Rx1的测量
[电源管理]
新型补偿式温度巡检电路设计 提高温度检测精度
三线制Pt1000的驱动电路的设计
  恒流源驱动电路负责驱动温度传感器Pt1000,将其感知的随温度变化的电阻信号转换成可测量的电压信号。本系统中,所需恒流源要具有输出电流恒定,温度稳定性好,输出电阻很大,输出电流小于0.5 mA(Pt1000无自热效应的上限),负载一端接地,输出电流极性可改变等特点。   由于温度对集成运放参数影响不如对晶体管或场效应管参数影响显著,由集成运放构成的恒流源具有稳定性更好、恒流性能更高的优点。尤其在负载一端需要接地的场合,获得了广泛应用。所以采用图2所示的双运放恒流源。其中放大器UA1构成加法器,UA2构成跟随器,UA1、UA2均选用低噪声、低失调、高开环增益双极性运算放大器OP07。   设图2中参考电阻Rr
[电源管理]
51单片机驱动DS18B20温度传感器程序及心得
关于DS18B20温度传感器,在没有硬件设备的辅助下,写内部程序有些困难,因为看不到实际信号波形。对于单片机,我。。。渐渐的有些心灰意冷。。虽然掌握了1_WIRE总线,却少了很多喜悦,下雨了。。。它是我的爱好,我付出了很多,可是我看不到实际的前景。。以我个人之力,要步入尖端芯片领域,很困难,在这里,采棉花是个普遍性的大问题,大型机械设备缺陷很多,如果以微控制芯片提高精度,我想效益会相当可观,可是技术瓶颈难以逾越。。。硬件研发,失败了,所有投入赴之东流,成功了,回报丰厚。现在,各行各业都处于饱和,没有成熟先进的技术,很难有立足之地,,,,,我开始重新审视我的选择。。。。。。艰难。。 /* 建立时间: 2013年5月2日;
[单片机]
Keyssa开启非接触式连接新时代
还在为连接器须互相触碰到才能开始传输而烦恼?还在为设备之间移动文件浪费等待的时间而困惑?还在为同步设备时画面的延迟而不满?就在今天非接触式连接的产品和应用 Kiss Connectivity 发布了,完全解决了您的这些困扰。不再受限于以往传统的使用方式, Kiss Connector为一种在设备之间和设备内部移动和流传输大型文件的非接触、固态芯片、近瞬时方法。 中国 2016年1月21日 Keyssa宣布推出其商业化产品 Kiss Connector, 该产品是极小、低成本、低功耗、嵌入式的电磁式连接器,可在运算设备之间安全地移动巨量带宽,改变了设备的通信方式及设计方式。把它安全植入产品表
[嵌入式]
Keyssa开启<font color='red'>非接触式</font>连接新时代
基于SMBUS的MAX6654型智能温度传感器特点及应用介绍
MAX6654是美国MAXIM公司生产的双通道智能 温度传感器 ,能同时测量远程温度、本地温度。它采用SMBUS总线接口,有多种工作模式可供选择,并具有可编程的欠温/超温报警输出功能。利用MAX6654可对PC机,笔记本电脑和服务器中CPU的温度进行监控。
[嵌入式]
一种非接触式电容感应开关设计与实现
  非接触感应技术已在汽车(无钥匙进入)、消费电子(自动背光、开关的控制)等领域得到广泛的应用,因其具有耐用性、成本低和结构简单等优势,已逐渐替代各种机械按键、开关。本文采用SMSC生产的CAP1166芯片,实现了非接触式、稳定可靠、结构简单的电容式感应开关设计。 1 非接触式电容感应工作原理     电容式感应主要原理是当被检测物体靠近接近开关工作面时,回路的电容量发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化来控制开与关的作用,从而检测物体的有或无。     电容开关是一对相邻电极,在电极之间有很小的电容。当一个导体接近两个电极时,在电极与导体之间会产生一个耦合电容。在这里,手指就是这个导体。通常电容开关的形式是
[电源管理]
一种<font color='red'>非接触式</font>电容感应开关设计与实现
51单片机学习——9--温度传感器DS18B20
DS18B20 简介 DS18B20数字温度传感器接线方便,封装后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。 特点 1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微 处理器与DS18B20的双向通讯。 3、DS18B20支持多点组网功能,多个
[单片机]
51单片机学习——9--<font color='red'>温度传感器</font>DS18B20
数字温度传感器DSl8820在卫星电源系统中的应用
0 引言 卫星电源系统主要用来为整个卫星的正常运行提供稳定的电源。它是卫星电能产生、储存、变换、调节、传输分配和管理的重要分系统。其基本功能是通过物理和化学过程将太阳的光能、核能或化学能转化为电能,并根据需要对电能进行存储、调节和变换,然后向卫星其它各分系统不间断供电。我国的卫星大都采用太阳能/蓄电池供电系统。蓄电池充电终压控制采用电压一温度补偿法,即V-T控制。蓄电池温度传感器传统上一般选用热电耦或铂电阻。模拟电路硬件控制是温度补偿的常用方法,已经在我国各种型号的卫星上获得成功应用。 为加快我国卫星电源分系统的数字化设计.充分体现数字电路体积小、重量轻、功耗低、适应性强和可靠性高等优点,提高电源分系统的电能重量比,本
[应用]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved