基于多功能触笔的PC触摸屏系统

发布者:二进制心灵最新更新时间:2011-06-04 关键字:触摸屏  移动指针  信号解码 手机看文章 扫描二维码
随时随地手机看文章

    目前触摸屏单点定位技术十分成熟,其本质是以触摸的方式代替传统的电脑鼠标的操作[1]。鼠标的操作包含“移动指针”和“按下按键”等不同的操作以及其组合。而现有的电脑触摸屏则是:

    (1)以一次触摸实现“移动指针”并“按下左键”两个操作,并不能区分用户的意图是仅“移动指针”、仅“按下按键”还是“移动指针”并“按下按键”,也不能区分用户想要按左键还是右键。

    (2)以一次触摸实现“移动指针”并“按下某按键”两个操作,通过某种方式切换触摸所实现的功能,在“移动指针并按左键”、“移动指针并按右键”两种功能中选择一种。在实际使用中,需要频繁地切换功能[2]。

    由此可见,目前的触摸屏系统对鼠标功能的实现不够完全,且缺乏效率。因此需要有一种方法和设备,能够允许电脑触摸屏同时支持“单独移动指针”、“单独滚动滚轮”、“单独按下或抬起按键”以及“移动指针”、“滚动滚轮”、“按下或抬起按键”三者的任意组合操作,免去频繁地切换功能,实现对传统电脑鼠标的完全替代[3]。

    支持带有按键和滚轮的触笔的电脑触摸屏系统为完全模拟电脑鼠标功能提供了一种巧妙的解决方案。下面介绍系统各组成部分的组成原理以及系统的工作方法。

    1 系统硬件构成

    系统硬件构成框图如图1所示。触摸屏系统由触摸屏、带有按键和滚轮的触笔、控制器三部分组成。

 

    1.1 触摸屏

    触摸屏由触摸面板和显示器件组成。触摸面板可以是四线电阻式触摸面板,用于检测带有按键和滚轮的触笔的笔尖触碰的位置,输出横、纵两路由模拟电压量表示的触碰位置信号到控制器中A/D(模数)转换电路[4];显示器件可以是电脑本来的显示器或额外的显示屏。显示器件作为电脑的显示设备,与电脑的显示器接口连接,显示电脑输出的图像信号,图像信号包括指针的位置。

    1.2 带有按键和滚轮的触笔

    带有按键和滚轮的触笔包含笔尖、左键、右键、滚轮、无线编码发射电路。

    笔尖碰触触摸屏的触摸面板以确定显示器件上的指针移动目的地的位置,碰触由触摸面板感受。

    左键、右键可以按下/抬起。滚轮既可以按下/抬起,也可以向上/下滚动。左键、右键、滚轮分别产生3路1位数字信号,信号分别表示左键、右键、中键(滚轮)的按下/抬起。另外,滚轮向上/下滚动时,分别产生两路方波数字信号,方波数字信号每个周期表示向上/下滚动一个单位。

    无线编码发射电路采用无线编码发射芯片PT2262,从管脚D0~D4接收用户按下、抬起按键或滚动滚轮的数字电压信号,其中D0接收左键按下/抬起信号,D1接收右键按下/抬起信号,D2接收中键(滚轮)按下/抬起信号,D3接收滚轮上滚信号,D4接收滚轮下滚信号。这5路1位数字电压信号被PT2262编码成一路1位数字信号并无线传输给控制器中无线接收解码电路(无线信号频率为315 MHz,采用ASK调制方式调制)。

    1.3 控制器

    控制器包含A/D转换电路、无线接收解码电路、主控电路和接口电路。A/D转换电路包含一个2路12 bit A/D转换芯片ADS7843,从CLK和DIN端口接收主控电路输出的控制信号,从X+、X-、Y+、Y-四个端口接收触摸面板输出的横、纵两路模拟电压量表示的触碰位置信号,并将其转换为横、纵两路数字电压量表示的位置坐标值,编码成一路1位串行数字信号,输出给主控电路,并从PENIRQ端口输出1位数字信号表示是否发生碰触,输出给主控电路[5]。

    无线接收解码电路包含一个无线接收解码芯片PT2272,用于接收带有按键和滚轮的触笔上无线编码发射电路所发射的无线信号(无线信号频率为315 MHz,采用ASK调制方式调制)。对无线信号解码为表示用户按下、抬起按键或滚动滚轮的数字电压信号,从管脚D0~D4输出,其中D0输出左键按下/抬起信号,D1输出右键按下/抬起信号,D2输出中键(滚轮)按下/抬起信号,D3输出滚轮上滚信号,D4输出滚轮下滚信号,这5路1位数字信号分别传输到主控电路中89C52的输入端口P10~P14。

    主控电路包括一个型号89C52的MCU,作为主控部分,用于处理信号和控制整个系统。主控电路的89C52从端口P20、P21输出对A/D转换电路的控制信号(时钟和控制字),从端口P22接收A/D转换电路返回的横、纵两路数字电压量表示的位置坐标值(1位数字串行信号),从P23接收A/D转换电路返回的PENIRQ信号(1位数字信号),并从端口P10~P14接收无线接收解码电路输出的表示用户按下、抬起按键或滚动滚轮的数字电压信号(共5个1位数字信号),P10接收左键按下/抬起信号,P11接收右键按下/抬起信号,P12接收中键(滚轮)按下/抬起信号,P13接收滚轮上滚信号,P14接收滚轮下滚信号。主控电路依据接口类型(如USB接口)进行编码处理。主控电路的89C52从端口P00~P07输出需要发送给电脑的控制信号和数据流(共8位数字信号)到接口电路。

    接口电路包括一个USB接口芯片PDIUSB D12,用于与电脑外设接口(对应USB接口芯片PDIUSB D12,则为USB接口)连接,实现与电脑的通信。接口电路从PDIUSB D12的端口D0~D7接收主控电路输出的控制信号和数据流(共8 bit数字信号),并通过双向端口X1、X2与电脑接口进行数字通信,让电脑通过显示器接口传输图像数据,移动显示器件上显示的指针,并实现电脑上的按键和滚轮操作功能。

    2 系统工作方法

    图2是本触摸屏系统的工作原理示意图。其工作原理包含6个过程:初始化、用户输入、信号传递和处理、主控处理、与电脑通信和电脑处理。

[page]

    2.1 初始化过程

    初始化过程包含子过程物理连接、设备识别和驱动。

    物理连接:触摸屏系统通过控制器中接口电路上的接口与电脑外设接口连接。

    设备识别和驱动:控制器中的主控电路通过数字信号控制接口电路与电脑进行通信,本系统采用USB协议,使电脑完成USB设备识别与USB设备驱动的过程。

    2.2 用户输入过程

    用户输入过程包含两个相互独立的过程:碰触定位和按键滚轮操作。

    (1)碰触定位:用户使用带有按键和滚轮的触笔的笔尖碰触触摸屏的触摸面板,以向触摸屏系统表示期望显示器件上的指针移动到的位置。触摸面板将此位置以横、纵两路由模拟电压量表示的触碰位置信号的形式输出到A/D转换电路。

    (2)按键滚轮操作:用户按下、抬起带有按键和滚轮的触笔上的按键或滚动滚轮,以向触摸屏系统表示自己希望电脑实现类似于电脑鼠标的按键和滚轮功能。这些操作产生数字的电压信号,输入到无线编码发射电路中。

    2.3 信号传递和处理过程

    信号传递和处理过程包含两个独立的处理过程:A/D转换和无线收发。

    A/D转换:A/D转换电路接收主控电路输出的控制信号后开始工作,如果触摸面板输出了横、纵两路模拟电压量表示的触碰位置信号,ADS7843则将其转换为横、纵两路12位数字电压量表示的位置坐标值,输出到主控电路[6]。

    无线收发:触笔的无线编码发射电路对按下、抬起触笔上的按键或滚动滚轮产生数字的电压信号并进行编码,将编码后的无线信号发射给控制器上的无线接收解码电路。控制器上的无线接收解码电路接收此无线信号,并对其解码,还原成表示用户按下、抬起按键或滚动滚轮的数字电压信号,输出到主控电路。

    2.4 主控处理过程

    主控处理过程全部在89C52的程序模块中完成。图3是主控电路89C52的程序模块示意图。89C52的程序模块包括:碰触定位模块、USB编码模块和输出模块。

 

    碰触定位模块以一定频率输出数字的控制信号,即A/D转换芯片的时钟和控制字,从端口P20、P21输出给A/D转换电路。如果P24接口接收到的1位数字信号PENIRQ显示发生碰触[5],则从端口P23接收A/D转换电路输出的一路1位串行数字信号DOUT,从中读取出碰触位置的坐标值X、Y,经过如下计算修正:X′=k1×X+X0、Y′=k2×Y+Y0(其中k1、k2、X0、Y0是给定参数,可设计校准功能以确定这些参数),最终得到移动指针的目的地坐标值X′、Y′,输送给USB编码模块。

    USB编码模块一旦接收到碰触定位模块输出的移动指针的目的地坐标值X′、Y′,或接收到按键和/或滚轮操作信号时,则将其编码为USB协议要求的格式,传递给输出模块。具体如何编码,取决于USB报告中将触摸屏系统描述为何种设备,设计者可以自行决定设备类型。

    输出模块将移动指针、按键操作、滚轮操作信号和接口电路控制信号共8位数字信号通过端口P00~P07输出给接口电路。

    2.5 与电脑通信过程

    如图1所示,接口电路受主控电路输出的控制信号控制,接收主控电路输出的需要发送给电脑的数据流,发送给电脑外设接口。

    2.6 电脑处理过程

    如图2所示,该过程包含信号解码和两个独立过程(移动指针和/或实现按键滚轮功能):

    电脑处理电脑外设接口接收到的USB信号,解码得到依据用户期望的指针移动位置和按下、抬起按键或滚动滚轮操作的意图,根据此意图,移动显示器件上显示的指针和/或完成按键和滚轮操作对应的电脑功能(见图1)。电脑处理过程结束后,系统回到用户输入过程循环工作。

    本文介绍的系统经过产品化设计后,生产出的产品与市场同类产品相比,具备相似的成本,但性能更优,能够实现市场同类产品难以实现的功能;系统可以广泛地应用于电脑操作、文字录入、图文制作、游戏控制等方面,其即插即用无需驱动和鼠标模拟的特点为用户提供更多方便;支持带有按键和滚轮的触笔的电脑触摸屏系统将改变设计师和用户的观念,成为电脑触摸屏的革新者,将会推动触摸屏更广泛的应用。

关键字:触摸屏  移动指针  信号解码 引用地址:基于多功能触笔的PC触摸屏系统

上一篇:MID系统电源构建
下一篇:数字电视信源编解码技术及应用

推荐阅读最新更新时间:2024-05-02 21:25

从控制器角度看感应电容触控系统设计
简介 自2007年iPhone®出现后,感应电容触摸屏的应用范围就在不断扩大。尽管如此,真正把感应电容触摸屏集成到设备中仍存在着很大的挑战,尤其在液晶显示器(LCD)、外围器件产生干扰及嘈杂的环境中。有效的解决方案之一是使用高信噪比(SNR)的触摸屏控制器来对抗噪声。一个高信噪比控制器还会有其它优势,下面将会详细描述。 SNR定义为信号(有用的信息)和噪声(无用信号)的功率比。如果信号和噪声在相同的负载下测量,SNR可以通过计算幅度均方根(RMS)的平方获得。功率比的值(PS/PN)通常很大,通常用对数(dB)来描述。SNR可以表示为: SNRdB = 10log10(PS/PN) = 10log10(RMSS/RMSN)²
[单片机]
从控制器角度看感应电容触控系统设计
ARM HMS30C7202与触摸屏接口电路的设计
1. 导言 随着现代计算机技术和互联网技术的飞速发展,嵌入式系统开始占据市场主流。因32位ARM嵌入式处理器具有高性能、低功耗的特性,它已广泛应用于科学研究、工程设计,军事技术,商业文化艺术及消费产品。而触摸屏作为一种最新的电脑输入设备,具有坚固耐用、反应速度快、节省空间、易于交流等优点。主要用于公共信息的查询、工业控制、军事指挥、旅游、电子游戏、点歌点菜、多媒体教学和房地产预售等场所。因此,本文着重讨论基于嵌入式微处理器HMS30C720与触摸屏控制器的接口设计和底层串口驱动与上层microwindows图形界面结合的编程设计方法,以实现触摸屏对嵌入式设备之间的控制。 2. 系统的整体结构 该系统的整体结构如图
[单片机]
ARM HMS30C7202与<font color='red'>触摸屏</font>接口电路的设计
触摸屏控制器性能指标信噪比的测量方案
触摸屏控制器制造商经常拿各种规格和标准来使自己的产品与众不同。其中最常提到的就是信噪比(SNR)。然而,当噪声存在时,即使数字上看起来不错,也并不意味着SNR就是一个很好的系统性能指标。这篇文章将讨论什么是信噪比,它是如何计算的,它对系统性能意味着什么,是否能很好的度量触摸性能。 什么是信噪比? 信噪比是触摸屏控制器的性能指标,现在已经作为行业标准被大家接受。信噪比的问题是没有任何行业标准的测量、计算、报告方法,尤其是在某些典型系统中,噪声具有高可变性的情况下,例如移动电话。这两个部分(信号和噪声)的测量和计算很大程度上依赖于被测装置(DUT),有代表性的是移动电话。值得注意的是,虽然信噪比作为性能衡量已被广泛接受,行业专家明
[测试测量]
泰克公司触摸屏示波器的演进,软硬兼施打造超值示波器
触摸屏显示器 已经占领了日常生活。从智能手机和笔记本电脑到智能电视及车辆导航系统,触摸屏显示器正在为用户改善设备的体验和功能。甚至宇航局也在其最新的航天器上使用触摸屏显示器进行大部分操作。 2017年,泰克推出了MSO5示波器,专为触摸界面设计。此前,触摸屏功能是事后添加到示波器中的,没有提供从头开始构建的触摸屏相同的体验。泰克公司技术市场经理David Pereles说: 事实上,当我们推出具有触摸屏功能的示波器时,我们向工程师明确说明这是一个真正的触摸屏,将给他们带来与平板电脑相同的体验。MSO5也是第一台提供8个FlexChannel™输入的示波器,只需更换探头就可以从模拟转换为数字。 自推出以来,泰克一直定期
[测试测量]
泰克公司<font color='red'>触摸屏</font>示波器的演进,软硬兼施打造超值示波器
2018年3月触摸屏出货量排行:欧菲科技/合力泰/TPK位列前三
   一、触控市场资讯   1、4月16日,中国建材集团有限公司、成都产业投资集团有限公司触控显示一体化模组项目投资合作协议签约仪式在成都举行。中建材所属凯盛科技集团、成都产业集团共同投资50亿元,建设触控显示一体化模组项目。   2、TPK-KY宸鸿董事会通过银行联贷,筹资规模约1.2亿~2亿美元,预计将用于投资扩产。    二、3月触控模组市场行情统计分析   根据旭日大数据调研数据显示,和手机产业链其他细分市场类似,触控模组市场在经历了2月份的低迷之后开始回暖,出货量得到小幅度上涨,与1月份基本持平。排名前三的是 欧菲科技 、 合力泰 和TPK。其中欧非科技、 合力泰 出货均超过10KK,分别排名第一、二位。    三
[嵌入式]
触摸屏代替遥控器 法雷奥遥控泊车技术
谈起比亚迪速锐,我第一反应就是它的遥控功能。实用性暂且放在一边,炫就够了。但用钥匙遥控,并且方向与前后退不能一起操作显得还是有些不便。现在智能手机如此普及,将遥控和手机结合在一起会发生什么呢?法雷奥给出了答案。 法雷奥的这项名为"Park 4U Remote"的遥控操作系统实现起来很简单,只要您有一部操作系统为安卓(Android)或iOS的智能手机,下载好相关的操作软件,然后与您的爱车进行数据连接。从此往后,您泊车的时候所需要做的事就是潇洒地下车,然后打开手机,启动泊车软件,像玩游戏一样通过触摸屏就能把车停进车位了。 也许你对下车后观察周围情况不便的情况存在顾虑,通过视频可以看到,手机软件会通过车辆本身的雷达
[汽车电子]
<font color='red'>触摸屏</font>代替遥控器 法雷奥遥控泊车技术
基于I2C总线的高分辨率红外式触摸屏设计
  引言   随着平面显示器的大规模应用和大屏幕平板显示器的出现,红外触摸屏的应用已十分广泛。同时,分辨率的进一步提高成为红外触摸屏应用于大屏幕的关键,本文提出了一种提高红外式触摸屏分辨率的方法。   系统结构及工作原理   系统工作原理   红外触摸屏基本原理是光束阻断技术,它不需要在原来的显示器表面覆盖任何材料,只需在显示屏幕的四周安放一个框架。框架两个对边上,一边安装红外发光二极管(LED),另一边安装红外线探测器,在显示屏幕的表面形成一个由红外线组成的栅格。当有任何物体进入这个栅格的时候,就会阻挡一些光线,光电转换电路就会收到变化的信号,由ADC转换后,MCU将计算的触摸位置坐标传递给操作系统。   早期红外触摸
[单片机]
基于I2C总线的高分辨率红外式<font color='red'>触摸屏</font>设计
高级ERM/LRA触觉驱动器增添触觉反馈效果
由于触摸屏能让人与屏幕上的内容直接互动、提供很高的灵活性、具有丰富的输入与手势词汇以及更高的机械耐用性等优势,因此,正在取代传统用户界面。但目前市场上常见的一些触摸屏也存在着一定的缺陷,例如,在接触屏幕或有事件发生时,不能提供物理或机械反馈,丧失了触感或触觉反馈。针对于此,德州仪器(TI)日前推出一款可为消费及工业类产品添加逼真触觉反馈效果过程的触觉驱动器DRV2605,该产品是目前市场上首个预加载具有123种独特触觉效果库的偏心转子电机(ERM)及线性谐振执行器(LRA)触觉驱动器,该库由触摸反馈技术的领先开发商及授权商Immersion设计并提供许可证。 触觉原理方案架构 TI中国区市场开发高性能模拟产品业务拓展经理信
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved