基于SP37的新型TPMS系统设计

发布者:创新驿站最新更新时间:2011-07-22 关键字:SP37  TPMS系统  软件设计 手机看文章 扫描二维码
随时随地手机看文章

        简要介绍了胎压监测系统(TPMS)的组成,提出了一种基于新型传感器SP37的胎压监测系统。该系统采用SP37和MAX1473作为无线收发芯片,详细阐述了其软件和硬件设计中的关键技术。实际测试效果表明,该系统接收灵敏度可达到-100 dBm,高速跑车时速100 km时工作稳定。

  汽车胎压监测系统(Tyre Pressure Monitoring System,TPMS)是一种能对汽车轮胎气压、温度进行自动检测,并对轮胎异常情况进行报警的预警系统。目前直接式TPMS发射模块较多采用以下两种方案:1)电池+单片机+传感器+射频芯片,2)是电池+内部集成MCU的传感器+射频芯片。前一种方案由于集成度低、体积和功耗大而被市场逐渐淘汰,后一种方案是当前市场上较为先进的产品设计形式。随着半导体及硅显微机械加工技术的快速发展,一种新的设计方案即电池+内部集成MCU和RF的专用传感器正成为TPMS发射模块设计的主流。这种方案集成度更高,体积和功耗更小,使用寿命更长,产品竞争力也更强。本文选用Infineon新一代系统级芯片SP37作为胎压传感器和射频发射器,选用MAXIM公司的MAX1473作为接收芯片,设计完成了一种新型胎压监测系统。

  1 系统描述

  胎压监测系统组成如图1所示,轮胎压力传感器分别安装在4个车轮轮毂上,负责测量轮胎内部的压力、温度和电池电压等物理状况,并将测量数据通过无线形式按照一定的规律发给胎压控制器。驾驶员通过胎压控制器上的显示屏和按键可查看4个轮胎的压力值、温度值。当某一个轮胎的温度、压力或电池电压超过了报警阀值,胎压控制器能够准确识别轮胎的位置,并且发出图形、声音、文字报警。

 

  2 系统硬件方案设计

  该TPMS系统包括两种硬件模块:轮胎压力传感器和胎压控制器,两种模块的硬件结构如图2所示。轮胎压力传感器主要由电池和集传感器、单片机和RF发射单元于一体的SP37组成,外围器件少,重量轻,成本低。胎压控制器采用了基于ASK调制模式的MAX1473作为无线接收芯片,由8位单片机控制实现数据的接收、显示和报警。本设计方案遵循欧洲标准,无线信号调制中心频率为433.92 MHz。

 

  2.1 SP37应用设计

  传感器和射频是无线轮胎压力传感器设计的关键。由于轮胎压力传感器安装在轮毂上,采用能量有限的锂电池供电,因此实现传感器和射频功能的芯片需具有以下两个特点:

  1)集成度高,外围器件尽可能少,便于进行可靠性设计;

  2)最小可工作电压低,功耗低,有多种工作模式,便于根据具体工作状态进行功耗管理,以尽可能延长监测模块的工作寿命。

  根据以上特点,并经过分析比较,最终选用了SP37这款高集成度系统级芯片。SP37是调频范围为300~450 MHz的胎压传感器芯片,内部集传感器、单片机和RF发射单元于一体,最大输出功率+8 dBm(50 Ω负载),最低1.9 V工作。应用电路如图3所示,主要包括电源滤波电路、晶振电路和天线匹配电路三部分。由于RF芯片对汽车电磁噪音非常敏感,恰当有效的滤波电路能很好地抑制噪音,提高可靠性,因而靠近电源引脚配置了滤波电容C1、C4和C6。SP37常用调制频率有315 MHz和433.92 MHz两种,不同调制频率所选用的晶振也不同。若调制频率为315 MHz,那么外部晶振频率G1应为19.687 5 MHz;若调制频率为433.92 MHz,G1则应为18.08 MHz。L1、L2、C2、C3和C5组成了天线匹配网络,通过优化这些参数可以将特定阻抗的天线匹配到SP37功率放大器的输出阻抗500 Ω,以抑制谐波,提高天线的效能。本设计采用气门嘴作为天线,通过软件仿真和反复测试验证,最佳匹配电路如图3所示。

 

  2.2 MAX1473射频应用设计

  胎压控制器可以直接由车载电源供电,对功耗的要求不是很严格。由于胎压控制器安装于车厢内,考虑到金属车身的屏蔽效应,高灵敏度是选择射频接收芯片时考虑的重要因素。而与FSK(frequency-shift-keyed,频移键控)制式的接收芯片相比,ASK制式的接收芯片具有更高的灵敏度,成本也较低,因此最终选用MAXIM公司的超外差接收机MAX1473来完成胎压传感器SP37射频无线信号的可靠接收,其应用电路如图4所示。

 

[page]

   MAX1473具有-114~0d Bm的信号输入范围,调制频率范围300~450MHz,接收数据速率最大为100 kb/s,内部集成了低噪声放大器、全差分镜频抑制混频器、带压控的片上锁相环、10.7 MHz中频限幅放大器以及模拟基带数据恢复电路,只需少量的外部器件即可构成胎压接收器的射频前端。MAX1473外围电路主要包括3部分:LNA调谐电路、输入匹配和晶振电路。LNA调谐电路由连接在LNAOUT引脚的L2和C9组成,谐振频率


  其中,LTOTAL和CTOTAL包括L2、C9以及PCB板引线、封装引脚的寄生电感和电容,混频器输入阻抗和LNA输出阻抗。为了提高灵敏度,谐振频率需尽可能接近所希望的RF输入频率。在本设计中,RF输入频率为433.92 MHz,当L2=15 nH,C9=3.0 pF时,接收灵敏度最高。LNASRC引脚与参考地之间的外部电感L3用于改善芯片外部的电感效应,并将LNAIN输入阻抗的实部设置为50 Ω。这时LNA的输入端等效于一个50Ω电阻与一个2.5 pF电容串联,输入阻抗为:f.JPG。当RF输入频率为433.92 MHz时,Z=50-j145。为消除输入阻抗的虚部,匹配50 Ω天线,可算出匹配电感L4约为73 nH。对于315 MHz系统,晶振G1频率为4.754 7 MHz;对于433.92 MHz系统,晶振G1频率为6.612 8 MHz,串联电容C1、C2用于修正因电路板寄生电容导致的晶振频率偏移。

  3 系统软件方案设计

  如何节能是轮胎压力传感器模块软件设计的关键问题。一个传感器模块要在一节几百毫安时的电池下工作2年以上,而射频发送数据帧时耗电最大,因此在保证数据传输正确的前提下应尽量减少发送次数。发射模块软件流程如图5所示,本设计采用了基于素数的动态时延算法,即各轮胎上的传感器模块在完成温度、压力的测量以后,分别按1 000ms×N1(N1为小于20的随机素数)延时后再将数据发送出去。与采用固定周期的延时算法相比,这种动态时延算法能大大降低数据发送冲突的概率。此外,如果传感器检测到轮胎静止超过1 h,则会自动进入休眠模式,即不再发送数据,直到被加速度信号唤醒。胎压控制器即接收模块的软件流程如图6所示。

 

 

  4 性能测试

  本设计方案样机已研制出,经反复测试具体性能指标如下:

1)可监测胎压范围为0~4.5 bar,分辨率25 mbar,通常轿车的轮胎气压在2.2~2.8 bar之间;
2)可监测温度范围:-40~125℃,分辨率2℃,轿车的轮胎温度一般约75℃;
3)轮胎压力传感器发射功率用频谱分析仪测得在-40 dBm左右,胎压控制器接收灵敏度在-100 dBm;
4)采用500 mAh的电池,若每天正常行车12 h,发射模块可正常工作6年以上。

  5 结束语

  目前,轮胎压力监测系统的强制标准已送交国家有关部门审核,汽车标配TPMS安全系统成为必然的趋势。本文基于SP37集成度高、可靠性强、功耗低的优点,选用MAX1473设计实现了一种新的无线胎压监测系统,该系统工作稳定可靠,具有很好的市场前景。

 

关键字:SP37  TPMS系统  软件设计 引用地址:基于SP37的新型TPMS系统设计

上一篇:EMC兼容的汽车开关稳压器设计
下一篇:智能无线通信在汽车安全中的应用

推荐阅读最新更新时间:2024-05-02 21:30

基于ARM的脑血氧监测仪的软件设计与实现
介绍了基于ARM的脑血氧监测仪软件的设计与实现。该软件通过控制探头对脑血氧信息进行采集并通过无线方式将信息发送给终端,终端对接收到的信息进行处理和显示,同时将病人信息存储在SQL Server CE2.0数据库中,实现病人信息的查询、添加、删除等功能。 氧是人体新陈代谢的重要物质,脑是人体新陈代谢最活跃的器官之一,正常人脑氧消耗量占全身氧消耗量的20%左右,在心脑血管疾病及脑外伤病人临床抢救与治疗中,如果缺乏对脑组织供氧的监护手段,就有可能造成脑组织神经功能的丧失或损害 。因此,研制一种连续监测脑供氧状况的临床设备,对提高心脑血管和脑外伤病人的诊断和治疗具有重大意义。本脑血氧监测仪可实时地采集左右脑血氧信号,把处理脑血氧信号得到
[单片机]
基于ARM的脑血氧监测仪的<font color='red'>软件设计</font>与实现
基于ARM的蓝牙实时数据采集系统的硬件与软件设计
1 引言 随着计算机技术的发展,尤其是无线技术广泛深入到人们生活的各个方面,使人们的生 活发生了深刻的变化。就工业数据采集、测量领域来讲,由于测量种类多、数据量大,且存 在许多条件恶劣、人们不易到达或不能时刻停留的地方偶尔采集一些现场数据,因而不但需 要花费大量的人力、物力和财力进行设备的维护,同时给采集带来很多不必要的麻烦。 为了解决上述问题,本文提出了一种基于ARM 的蓝牙实时数据采集系统。采用嵌入式 操作系统Windows CE,对通过蓝牙无线传输方式集中的传感器采集数据,进行控制、显示、 处理,实现工业实时数据的采集。ARM 技术为内核的微控制器指令周期短,处理能力强, 接口丰富,能成功运行操作系统,为控制系统的应用程
[单片机]
便携式全数字心率测量装置的应用系统软件设计
引言 目前检测心率的仪器虽然很多,但是能实现精确测量、数据上传PC机并且具有声光报警等多种功能的便携式全数字心率测量装置很少。本文介绍的数字人体心率检测仪可以在人体的手、腕、臂等部位均能准确测量出心跳次数,同时还具有掉电存储、测量数据上传PC机及声光报警等多项功能。 1 、系统组成及工作原理 系统组成如图1所示,本设计以单片机为主控信号,外辅少量硬件电路,完成数据处理、记忆、显示、通信等功能。 首先,在系统开机时通过键盘设定系统的工作方式,然后,将压电陶瓷片检测到人体心跳信号经过放大、滤波及整形处理后输入给单片机,单片机对测量的数据进行处理,送显示电路显示,同时通过通信电路将测量数据上传PC机,记忆电路主要用来存储测量数据
[单片机]
便携式全数字心率测量装置的应用<font color='red'>系统</font><font color='red'>软件设计</font>
燃料电池发动机监控系统软件设计
1 引言    车用燃料电池具有效率高、启动快、环保性好、响应速度快等优点,是取代汽车内燃机的理想解决方案。燃料电池汽车的最大优点是清洁、无污染,在全球环境保护问题日益突出的今天,燃料电池汽车作为环保型汽车越来越受到人们的重视。为提高燃料电池发动机系统的可靠性,需要对发动机的各系统状态进行实时监控,记录试验数据,分析其运行特性,为发动机控制策略的不断改进提供依据,同时对整车性能进行评估。因此,燃料电池发动机监控系统的开发具有很重要的现实意义。 2 系统概述   2.1 系统结构简介    本系统由软件和硬件两部分组成,如图1所示。它以高性能的dsp为核心,开发出控制燃料电池发动机的嵌入式控制器。不仅能完成对燃料电池发
[汽车电子]
燃料电池发动机监控<font color='red'>系统</font><font color='red'>软件设计</font>
基于Android的3G手机网络摄像机客户端软件设计
1 系统硬件组成与网络架构 摄像机硬件核心采用三星公司推出的基于ARM9架构的S3C2440A芯片,该处理器主频达到400 MHz可以满足实时压缩,MJPEG视频流可以达到320×240分辨率25 fps的性能要求。外围搭配64 MB SDRAM、256 MBNAND Flash,网络功能由DM9000以太网MAC控制芯片负责,摄像头模块由USB控制器控制,系统供电由3片LM71117组成,分别输出3.3 V、1.8 V、1.25 V电压,辅助外围接口构成摄像机硬件结构。S3C2440A系统硬件框图如图1所示。 网络摄像机是互联网上的TCP/IP设备,系统网络拓扑图如图2所示。其中在家庭区域内根据安防的特点在大门走廊、客厅内、阳台
[单片机]
基于Android的3G手机网络摄像机客户端<font color='red'>软件设计</font>
基于TMS320LF2407A的机器人运动控制系统软件设计
随着、网络、机械、信息、智能移动机器人是一类能够通过移动机器人技术研究综合了多学科领域的知识,关键技术可分为:路径规划、导航定位、路径跟踪与运动控制技术。路径规划又可分为全局和局部路径规划。全局路径规划是根据移动机器人总体任务进行路径规划,将总体路径任务分解,并建立全局地形;局部路径规划是根据全局规划分解的子任务,结合移动机器人当前状态信息,实时规划可行路径;导航定位技术确定移动机器人在全局地图中的位置,并实时得到机器人与路径跟踪的相对位置关系,其关键技术是多信息处理与数据融合技术。路径跟踪与运动控制技术的任务是控制移动机器人跟踪局部规划给出的路径,结合导航定位系统得到机器人本身状态信息与道路信息,完成航向和速度控制。移动机器人
[机器人]
基于嵌入式Linux系统的导航软件设计思路
1 引言   随着汽车等各种车辆交通工具的普及,车辆导航设备的需求也变得日益旺盛。作为车载设备。不仅要有可靠的性能,而且需要具有便携、低功耗和低价格等特点。而采用基于ARM微处理器的嵌入式系统与GPS模块相配合的GPS导航终端机的设计方案,可以很好的满足这一系统需求。为此,本文介绍了一种利用ARM9开发板和GPS模块实现GPS导航功能的终端机的软硬件结构和设计方法。    2 GPS导航系统结构   本文所介绍的GPS全球定位导航系统按功能可分为嵌入式主控模块、GPS模块、显示模块、扩展模块及供电模块等五大部分。   嵌入式主控模块基于S3C2440处理器,主要负责对GPS导航模块数据的响应、处理和控制。在硬件上,主控
[汽车电子]
基于嵌入式Linux<font color='red'>系统</font>的导航<font color='red'>软件设计</font>思路
正弦逆变器控制软件设计
摘要:介绍单相全桥逆变器的工作原理,阐述产生SPWM波和实现PI控制的算法,给出以DSP(数字信号处理器)实现控制的软件流程。实验表明利用软件完成逆变器控制是可行的。 关键词:正弦逆变器;控制;SPWM;PI;DSP 目前,正弦逆变器的控制通常采用模拟电路或数字电路实现。由于硬件的固有缺点和不能实施先进的控制策略,致使逆变器的性能不能极大的提高。随着高速微处理器的问世,特别是具有高速运算、处理和控制能力的DSP的出现,使得对正弦逆变器采用新的控制方法成为可能。文中将重点介绍采用DSP实现正弦逆变器控制的方法。 图1 1 全桥正弦逆变器 图1示出单相全桥逆变器的原理电路及波形。其中H桥和滤波电路完成直流到交流的变换
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved