无位置传感器无刷直流电机的换相方式研究

发布者:RainbowMelody最新更新时间:2011-07-29 关键字:无位置传感器  无刷直流电机  分压电路  恒零相移滤波  线电压比较器 手机看文章 扫描二维码
随时随地手机看文章

在介绍传统无位置传感器反电动势检测方法的基础上,采用了恒零相移滤波技术,提出了一种新型的检测方法,并对这种新型的检测方法进行了实验验证,最终证实了控制策略的正确性与合理性。

引言
永磁无刷直流电机由于其无换向火花、运行可靠、维护方便、结构简单、无励磁损耗等众多优点,自20世纪50年代出现以来,就在很多场合得到越来越广泛的应用。传统的永磁无刷直流电机均需一个附加的位置传感器,用以向逆变桥提供必要的换向信号。它的存在给直流无刷电机的应用带来很多不便:首先,位置传感器会增加电机的体积和成本;其次,连线众多的位置传感器会降低电机运行的可靠性,即便是现在应用最为广泛的霍尔传感器,也存在一定程度的磁不敏感区;再次,在某些恶劣的工作环境中,如在密封的空调压缩机中,由于制冷剂的强腐蚀性,常规的位置传感器根本就无法使用;此外,传感器的安装精度还会影响电机的运行性能,增加生产的工艺难度。针对位置传感器所带来的种种不利影响,近一二十年来,永磁无刷直流电机的无位置传感器控制一直是国内外较为热门的研究课题。从20世纪70年代末开始,截至目前为止,永磁无刷直流电机的无位置传感器控制已大致经历了3个发展阶段,针对不同的电机性能和应用场合出现了不同的控制理论和实现方法,如反电势法、续流二极管法、电感法等。
所谓的无位置传感器控制,正确的理解应该是无机械的位置传感器控制,在电机运转的过程中,作为逆变桥功率器件换向导通时序的转子位置信号仍然是需要的,只不过这种信号不再由位置传感器来提供,而应该由新的位置信号检测措施来代替,即以提高电路和控制的复杂性来降低电机的复杂性。所以,目前永磁无刷直流电机无位置传感器控制研究的核心和关键就是架构一转子位置信号检测线路,从软硬件两个方面来间接获得可靠的转子位置信号,借以触发导通相应的功率器件,驱动电机运转。

1 传统反电动势检测方法
无刷直流电机中,受定子绕组产生的合成磁场的作用,转子沿着一定的方向转动。电机定子上放有电枢绕组,因此,转子一旦旋转就会在空间形成导体切割磁力线的情况。根据电磁感应定律可知,导体切割磁力线会在导体中产生感应电热。所以,在转子旋转的时候就会在定子绕组中产生感应电势,即运动电势,一般称为反电动势或反电势。
1.1 传统反电动势检测的原理
具有梯形反电动势波形的三相无刷直流电机主电路,对于某一相绕组(假设A相),其导通时刻的基本电路原理图如图1所示。

 


1.2 反电动势的推导
无刷直流电机的三相端电压方程:

[page]

 

由于采用两相导通三相六拍运行方式,任一瞬间只有两相导通,设A相、B相导通,且A+,B-,则A、B两相电流大小相等,方向相反,C相电流为零。


式(5)即为C相反电动势检测方程。
同理,A和B相反电动势检测方程为:


但是实际上,绕组的反电动势难以直接测取,因此,通常的做法是检测电机端电压信号,进行比较来间接获取绕组反电动势信号的过零点,从而确定转子的位置,故这种方法又称为“端电压法”。
基于端电压的反电动势检测电路如图2所示,将端电压Ua、Ub、Uc分压后,经过滤波得到检测信号Ua、Ub、Uc,检测电路的O点与电源负极相连,因此式(5)~(7)转化为:

 


根据上述结论,检测到反电动势过零点后,再延迟30°即为无刷直流电动机的换相点。但实际的位置检测信号是经过阻容滤波后得到的,其零点必然会产生相位偏移,实际应用时必须进行相位补偿。

2 新型检测方式的提出
针对以上现有技术存在的缺点,提出一种电路简单、成本低、恒零相移滤波,无需构建虚拟中性点,无需速度估测器和相移校正,在整个高转速比的范围内都能保持输出准确换相信号。该换相信号与霍尔传感器输出的换相信号完全一致,无需高速控制IC,可以直接使用与霍尔传感器相配套的低价控制IC。
[page]

2.1 电路构成
本设计采用方案包括3个分压电路、3个恒零相移滤波电路和3个线电压比较器,如图3所示。其特征在于3个分压电路分别由两个电阻R1、R2串联,其R1的一端作为输入端分别无刷直流电机的三相电机线连接,R2接地,R1、R2的连接点作为输出端,分别与相应线电压比较器的正确输入端连接;3个恒相移滤波电路分别由两个电阻R3、R4,两个电容C1、C2和一个集成运放构成。电容C1并连接于分压电路R2。电容C2的一端与运放的正输入端连接并与电容C1的一端连接,另一端与运放的负输入端连接。电阻R4的一端与运放的负输入端连接,另一端接地。3个线电压比较器的正输入端分别与相应分压电路的输出端连接,而负输入端分别与相邻分压电路的输出端连接。各线电压比较器的输出分别作为电机的换相信号。

 


2.2 电路分析
本设计与以往技术相比,由于采用了不随电机转速变化的恒零相移滤波电路,无需相移校正,而送到比较器正负端的电压是两路没有相移的端电压,无需构建虚拟中性点。比较器检测到的是线电压的过零点,这个过零点正好对应电机的换向点,因此,输出的换相信号与霍尔传感器输出的换相信号完全一致。在无刷直流电机高转速比的范围内,无需高速控制IC,可以直接使用与霍尔传感器相配套的低价控制IC,电路结构简单,成本低,可以替代霍尔传感器广泛应用在家电、计算机外设和电动车用等无刷直流电机上。
电机三相端电压Va、Vb、Vc经3个分压电路和恒零相移滤波电路后,得到幅值减小的平滑端电压Vao、Vbo、Vco,滤波前后每一相端电压的相移角度φ为:


式中ω为电机运行的角速度。
只要设计,就可以使得滤波前后的相移角度恒为零,确保端电压的过零点滤波前后不会跟随电机速度的变化而移动,无需相移校正。
相邻两相的恒零相移端电压送到比较器后,比较器比较的是两相端电压,实质上就是检测线电压的过零点。这个过零点正好对应电机的换相点,因此,比较器输出的换相信号与霍尔传感器输出的换相信号完全一致。
2.3 实验验证
Va、Vb、Vc、Vao、Vbo、Vco及各换相信号的波形图略——编者注。

结语
本文利用无刷直流电机端电压设计的换相控制电路,结构简单,运行可靠。经过实验证实,此电路输出的换相信号与霍尔传感器输出的换相信号完全一致,从而在一定程度上可以替代霍尔传感器,并可应用于较高温、高压、高辐射等传感器无法胜任的场。不过由于器件自身的局限性,在一些更加恶劣场合的应用还有待测试和改善。

 

关键字:无位置传感器  无刷直流电机  分压电路  恒零相移滤波  线电压比较器 引用地址:无位置传感器无刷直流电机的换相方式研究

上一篇:组态软件在离心通风机防喘振控制系统中应用
下一篇:基于台达PLC和变频器的位置控制系统实现

推荐阅读最新更新时间:2024-05-02 21:31

基于MC9S12X128无刷直流电机控制系统设计
直流无刷电机是一种高性能电机,它具有效率高、可靠性好、结构简单、便于维护和体积小等优点。与直流电机相比,无刷电机没有电刷和换相器,而采用电子电路进行换相,换相时不会产生电火花,不存在机械换向损耗。与异步电机相比,无刷电机的转子与定子磁场同步旋转,因此不存在转子损耗。与同步电机相比,无刷电机控制方法简单,便于工程应用的特性,使其被广泛应用于众多领域。 直流无刷电机的控制方案有多种,如文献采用DSP作为主控制器的控制系统,文献采用FPAG控制无刷电机,文献选用MEGA8单片机控制方案。这些控制方法都能够实现电机的正反转、启停等控制,但在系统实现成本、控制精度、运行稳定性和外围电路的能源消耗等方面上却有较大的差别。使用DSP和FP
[单片机]
基于MC9S12X128<font color='red'>无刷直流电机</font>控制系统设计
DSP在三相无刷直流电机中的应用
1 概述   无刷直流电机是随着电力电子器件及新型材料发展而迅速成熟起来的一种新型机电一体化电机,它既具有交流电机的结构简单,运行可靠,维护方便等优点,又具备直流电机那样良好的调速特性而无由于机械式换向器带来的问题,还具有运行转速稳定、效率高、相对成本低等优点,因此被广泛应用于各种调速驱动场合 。以往的无刷直流电机多由单片机附加许多种接口设备构成.不仅复杂,而且速度也受到限制,难于实现从位置环到速度、电流环的全数字控制,也不方便扩展。而应用数字信号处理器(DSP)实现的电机伺服系统却可以只用一片DSP就可以替代单片机和各种接口, 扩展方便,可以实现位置、速度和电流环的全数字化控制 。   本文采用TI公司推出的240xDSP作
[工业控制]
电动汽车用永磁无刷直流电机的有限元分析
1 引 言 电动汽车公害少,节约石油消耗,结构简单,维修容易,使用寿命长,受到世界各国的青睐。永磁无刷直流电动机与相同功率的其他类型的电动机相比,体积小,质量轻,在质量、效率、价格等方面有相当明显优势,永磁无刷电动机没有电刷和滑环等零件,结构更简单,性能更可靠,环境适应性好,更加适合作为电动汽车的驱动电动机。由于一般采用方波供电,在相同的峰值电压和峰值电流下,方波电流和方波磁场相互作用产生的转矩要大,所以永磁无刷电动机可以输出较大的电磁转矩。 随着电子技术与控制技术的迅速发展,如果将电动机直接安装在汽车的轮毂内,通过电气控制实现调速和直接驱动(2轮或4轮),则汽车内可以省去复杂的齿轮变速使动机构,汽车结构大为简化,质量大为减轻。
[嵌入式]
用于白家电的无刷直流(BLDC)电机驱动及控制方案
电机又称马达,是一种依据电磁感应定律实现电能转换或传递的装置,主要作用是产生驱动转矩,作为电器或各种机械的动力源。按工作电源来分,电机包括交流(AC)电机和直流(DC)电机。其中直流电机又包括采用机械式换向的有刷直流电机和采用电子换向的无刷直流(BLDC)电机。BLDC电机又分旋转电机和步进电机,具有显著的节能、低噪声和优异变速性能等特性,特别适合于电冰箱、空调及洗衣机等白家电应用。随着国家各项节能政策的出台,家电行业已经开始广泛导入BLDC电机。要使这些BLDC电机可靠、高效地工作,设计人员需要选择恰当的电机驱动或控制方案。 安森美半导体在电机驱动器设计、生产及应用方面拥有丰富经验,提供宽广范围的电机驱动及控制方案。本文将介
[嵌入式]
无刷直流电机有哪些优点
无刷直流电机具有温升低,噪音小,大扭矩、高转速,高效率(运行平稳,可靠性高,稳定性好),低能耗(消除了多级减速损耗,综合节电率可达20%~60%),无火花(不产生火花,特别适合爆炸性场所),长寿命(可连续使用30000小时)等优点。 无刷直流电机被广泛用于各行各业微型机械:例如循环风扇、增湿器、抽湿器、空气清新器、冷暖风机、皂液器、烘手机、智能门锁、纺织机械、激光加工机械、雕刻机、印刷机械、医疗器械、自动包装机、各类机器人、自动化生产线、数控车床、精密测量仪、电子制造设备等等。 ★无刷电机在某些领域也称直流变频电机(BLDC) ,它采用电子换向(霍尔传感器) ,线圈(电枢)不动磁极动,此时永磁铁可以在线圈外部也可以在线圈内
[嵌入式]
<font color='red'>无刷直流电机</font>有哪些优点
TL431可变型稳压温控集成电路
  1.工作原理   接通电源后,加热电阻通过继电器的常闭触点接人220V交流电路中,加热开始。此时温度为常温,负温度系数的热敏电阻为lOkΩ,随着加热的进行,Rt阻值不断下降,Uref开始上升,此时调节Rpl亦可改变决定温度的上限温度控制点T1。   当温度达到控温点时.Rt=Rtl,Uref=UCC*R2/(R2+R11上》2.5V,运算放大器输出为高电平,内部三极管导通,继电器吸合.常闭触点断开,加热停止。同时继电器的另一组常开触点闭合,使Rp2+R3与R11并联,使Uref进一步上升,此电路是一个简单的滞回电路。   通过调节Rp2可调节温控器的下限温度控制点T2。随着加热的停止,温度开始慢慢的回落.Rt逐步增大,即当
[电源管理]
TL431可变<font color='red'>分</font><font color='red'>压</font>型稳压温控集成<font color='red'>电路</font>图
无刷直流电机和有刷直流电机的区别
无刷直流电机和有刷直流电机是两种不同类型的直流电机。 有刷直流电机的工作原理是利用电荷和磁场之间的相互作用来产生旋转运动。电机中有一组刷子,可以通过交替改变电流的方向来改变转子北极和南极的极性,从而使转子不断旋转。 无刷直流电机的工作原理是通过电枢(通常是三相交流电)和定子(由一组磁铁构成)之间的相互作用来产生旋转运动。转子上有一组永磁体或电极,当电枢中的电流流过时,它们产生的磁场就会与定子中的磁场相互作用,从而使转子不断旋转。无刷直流电机无需刷子,因此具有更高的效率和更长的使用寿命。 无刷直流电机和有刷直流电机的功能特点 无刷直流电机和有刷直流电机都是直流电机,但它们在结构上有所不同,因此具有一些不同的功能特点。 无
[嵌入式]
瑞萨全新SiP解决方案可简化无刷直流电机控制设计
全球半导体解决方案供应商瑞萨电子集团宣布,推出两款系统级封装(SiP)解决方案,扩展电机控制解决方案组合,并简化无刷直流(BLDC)电机控制设计,适用于各类无线电池供电应用系统,如电动工具、无人机、水泵、吸尘器、扫地机器人、风扇等。与同类解决方案相比,全新RAJ306001和RAJ306010电机驱动IC将多种功能整合至同一SiP解决方案,实现更好的低速或高速旋转与高扭矩控制,同时最大限度减少占板面积并降低成本,从而为简单、高效且安全的BLDC电机控制提供交钥匙解决方案。 RAJ306001和RAJ306010是单封装电机控制IC,可控制广泛应用于各类电池供电设备中的三相BLDC电机。全新IC将RL78/G1F微控制器(MC
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved