基于DSP和FPGA的机载总线接口板研究

发布者:数字小巨人最新更新时间:2011-09-23 关键字:DSP  FPGA  机载总线接口 手机看文章 扫描二维码
随时随地手机看文章
  目前国内对民用飞机机载数据总线ARINC429接口板的设计一般都是基于HARRIS公司的HS3282芯片完成的,它的缺点是路数有限、非常不灵活。因此对ARINC429总线接口板的研制,实现多通道ARINC429总线数据的接收和发送,成为目前对飞机机载总线接口研究的重点,具有非常重要的现实意义和应用前景。

  1 ARINC429总线简介

  在现代民用飞机上,系统与系统之间、系统与部件之间需要传输大量信息。ARINC规范就是为了在航空电子设备之间传输数字数据信息而制定的一个航空运输的工业标准。

  ARINC429(以下简称429)总线协议是美国航空电子工程委员会(Airlines Engineering Committee)于1977年7月提出的,并于同年发表并获得批准使用。它的全称是数字式信息传输系统DITS。协议标准规定了航空电子设备及有关系统间的数字信息传输要求。ARINC429广泛应用在先进的民航客机中,如B-737、B-757、B-767,俄制军用飞机也选用了类似的技术。我们与之对应的标准是HB6096-SZ-01。ARINC429总线结构简单、性能稳定,抗干扰性强。最大的优势在于可靠性高,这是由于非集中控制、传输可靠、错误隔离性好。

  429总线采用双绞屏蔽线传输信息,通过一对双绞线反相传输,具有很强的抗干扰能力。而调制方式则采用双极归零制的三态码方式,即信息由“高”、“零”和“低”状态组成的三电平状态调制。429电缆上的信号及经电平转换后的信号如图1所示。429总线每一个字为32位,它的字同步是以传输周期至少4位的时间间隔也就是4位码字为基准的。

  图1 429信号及电平转换后的波形

  2 系统总体方案

  429总线接口板的主要功能是在429信号及相关外设之间起到桥梁作用,它既能接收双极归零制的429信号并将其转换为数字信号送入计算机或其它设备,又可将计算机或其它设备发出的数字信号转换为429信号输出。本文介绍的总线接口板采用FPGA和DSP实现四路429信号接收通道和四路429信号发送通道,且每路通道之间相互独立。在这个接口板中,每两个数据字之间的时间间隔可调,每一个收发通道能单独定义字间隔长度,每个通道校验方式可单独定义为奇校验或偶校验,数据发送可以选择单帧发送或自动重复发送(重复发送某一帧)。

  整个接口板由调制电路、解调电路、FPGA、DSP和双口RAM组成,如图2所示。

  图2 接口板硬件结构图

  3 硬件电路设计

  3.1 调制解调电路设计

  429信号进入接口板后,首先要把429信号转换为数字电路可以识别的TTL电平。这里采用HOLT公司的HI-8482实现信号的解调,将标准的429总线信号转换成5V TTL数字信号。为了降低干扰,在429总线信号的四个输入管脚分别接入39pF的高精度军品电容;采用HOLT公司的HI-8585芯片实现信号的调制,将TTL数字电平转换为标准的429信号。

  3.2 FPGA内部逻辑设计

  按照429信号的编码格式、特点、传输规则以及协议要求,选用一片ALTERA公司的ACEX1K型的FPGA发送和接收四路数据。每一路分为接收部分和发送部分。

  接收部分的主要作用是通过串/并转换将串行数据转换为32位并行数据,并对收到的数据自动实行差错控制。对于字间隔、位间隔出错等错误能进行自动检测,若无错误,则将数据分两次送至DSP的16位数据总线上,以供读取。接收模块结构框图如图3所示。

  图3 接收模块结构框图

  发送部分的主要功能是将DSP送入的数据暂存在FPGA内部的FIFO中,等待发送命令。一旦接到发送控制指令,FIFO输出数据并通过并/串转换将并行数据转换为串行数据,同时加入预先设定的间隔。用户可通过写控制寄存器选择发送模式(即单帧发送或自动重复发送)、发送通道延迟设定、发送通道字间隔设定,还可通过读取状态位检查它的工作状态(发送缓冲器空、发送缓冲器满和是否正在发送)。发送模块结构框图如图4所示。

  图4 发送模块结构框图

  FPGA内部结构是基于SRAM的,因此需要一片配置芯片固化内部逻辑。为了便于调试,采用JTAG模式和被动串行模式(PS)两种配置模式,调试时使用JTAG模式直接将逻辑写入FPGA内部,调试好后再用PS模式将程序写入配置芯片。通过对FPGA和配置芯片上的引脚进行跳线,可选择不同的配置方式。跳线电路如图5所示。

  图5 FPGA配置跳线设置

  FPGA作为DSP的一个I/O外设,必然要对它的寄存器地址统一编址。在此将FPGA编址在DSP的I/O空间。由于FPGA的接收通道和发送通道是共用DSP的16位数据线的,故接收通道和发送通道的数据寄存器可以占用一个地址。表1是FPGA各通道寄存器分配的地址。

  表1 FPGA内部各通道寄存器地址

  3.3 DSP与FPGA及外部设备的通信

  DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

  在整个系统的设计中,DSP主要用于控制FPGA工作、数据中转、与外设主机通信。利用DSP向FPGA写控制字,其中包含帧间隔长度大小等信息,可对FPGA进行控制;另外,根据FPGA的反馈状态,可做出相应的控制调整。考虑到用于控制FPGA的I/O口比较多,选用的DSP是TI公司的TMSLF2407A。TMSLF2407A的复用外围I/O口多达39个[2],图6是DSP与FPGA之间的具体连接。

  图6 DSP与FPGA的连接示意图

  DSP提供I/O操作信号/IS、读写选定信号R/W、读使能信号/RD、写使能信号/WE以及地址线低四位A0、A1、A2、A3。通过这些控制逻辑信号可区分四路通道及每路通道的高低字。

  DSP和FPGA提供的其它辅助的控制和状态信号还包括:四路发送使能信号/ENTX[03],低电平有效;四路发送停止信号/TXT[03],低电平有效;接收数据到达信号/RER[03],用于告知DSP准备接收某一路通道已经到达的数据;发送数据准备好信号/TXR[03]信号,用于告知各个发送通道中是否还有未发出的数据暂存在FIFO里,低电平表示没有数据;发送通道FIFO满信号FUL[03],高电平有效;GLOBCLRN信号,用于FPGA初始化时对其内部进行全局清零;TESTREQ信号,用于对整个系统的自检。

  整个电路板是通过双口RAM与外设主机进行通信的,双口RAM负责暂存外设要发送的数据和暂存FPGA处理过的数据。可把它大致分为8个区,每一个区负责存放四路接收通道和四路发送通道中的一路数据及控制字。利用双口RAM左右两中断的信箱可指挥接口板进行相应的操作。

  4 软件设计

  软件的设计主要是DSP编程,DSP程序的主要任务就是初始化、管理DSP外围电路、控制FPGA的收发数据以及与外设交互。DSP的主程序流程图如图7所示。

图7 DSP主程序流程图

  整个接口电路板调试通过后,经过测试可以同时接收和发送四路ARINC429信号。这就解决了以往接口电路板通道数太少的瓶颈。

    本系统利用FPGA密度高、结构灵活、设计时间短和可编程的优点,实现了对某路ARINC429信号的独立处理,再加上TI公司2000系列DSP丰富的I/O接口和较普通单片机更快的速度,实现了对FPGA的控制管理及与外设的通信。因此本系统对当今民用飞机机载数据通信总线互联提供了一种新型、先进的方法,具有相当普遍的实用意义。

关键字:DSP  FPGA  机载总线接口 引用地址:基于DSP和FPGA的机载总线接口板研究

上一篇:DDS芯片AD9850的工作原理及其与单片机的接口分析
下一篇:ADS8364与TMS320F2812的接口设计方案

推荐阅读最新更新时间:2024-05-02 21:36

基于ARM+FPGA的重构控制器设计
 可重构技术是指利用可重用的软硬件资源,根据不同的应用需求,灵活地改变自身体系结构的设计方法。常规SRAM工艺的FPGA都可以实现重构,利用硬件复用原理,本文设计的可重构控制器采用ARM核微控制器作为主控制器,以FPGA芯片作为协处理器配合主控制器工作。用户事先根据需求设计出不同的配置方案,并存储在重构控制器内部的存储器中,上电后,重构控制器就可以按需求将不同设计方案分时定位到目标可编程器件内,同时保持其他部分电路功能正常,实现在系统灵活配置,提高系统工作效率。  1 SVF格式配置文件   很多嵌入式系统中都用到了FPGA/CPLD等可编程器件,在这些系统中利用SVF格式配置文件就可以方便地通过微控制器对可编程器件进行重新
[单片机]
基于FPGA和单片机的频率监测系统
O.引言 本系统利用单片机和FPGA有效的结合起来共同实现等精度频率测量和IDDS技术,发挥各自的优点,使设计变得更加容易和灵活,并具有频率测量范围宽、产生的波形频率分辨率高及精度大等特点。 系统方便灵活,测量精度和产生的波形分辨率高,能适应当代许多高精度测量和波形产生的要求,可以在各类测量系统和信号发生器中得到很好的利用,频率测量在电路实验、通讯设备、音频视频和科学研究中具有十分广泛的用途。等精度测量技术具有广阔的应用前景,由于其性能的优越性,在目前各个测量领域中都可以发挥着很好的作用,特别是在海洋勘探,太空探索以及各类实验中都得到了应用。 1.DDS信号发生器的实现 使用FPGA与单片机相结合的方式构成DDS信号
[单片机]
基于<font color='red'>FPGA</font>和单片机的频率监测系统
DSP器件为核心的嵌入式系统技术
    摘要: 以DSP为信心的嵌入式系统具有实时性、利于并行处理等优点,这也是嵌入式系统中的重要技术。本文在讨论嵌入系统基本技术特征的基础上,比较详尽地介绍了DSP嵌入式系统的基本结构和技术特征,并对应用特性进行了讨论。     关键词: 嵌入式系统 DSP 嵌入式系统的目的是提供一个以多任务和网络为信心,易于开发的复杂数字系统。从数字技术和信息技术的角度看,嵌入式系统已成为现代信息网络技术应用的基础技术,已成为现代工控领域的基本技术。 使用嵌入式系统技术,不仅可以实现硬件和软件的优化集成,更主要的是提供了使用“数字基因技术”的基本工具。从计算机和信息网络技术发展的角度看,嵌入式系统标志着网络化计算机时
[应用]
基于DSP的USB口数据采集分析系统设计
随着DSP芯片功能越来越强,速度越来越快,性价比的不断提高以及开发工具的日趋完善,广泛用于通信、雷达、声纳、遥感、生物医学、机器人、控制、精密机械、语音和图像处理等领域。作为计算机接口之一的USB(Universal Serial Bus)口具有势插拔、速度快(包括低、中、高模式)和外设容量大(理论上可挂接127个设备)的特性,使其成为PC机的外围设备扩展中应用日益广泛的接口标准。本文设计并实现了基于DSP的USB口数据采集分析系统,该系统的DSP负责数据的采集和运算处理,处理结果通过USB口送计算机显示分析,其结构如图1所示。   该结构图中,CPLD和FPGA实现模块接口,包括串并转换、8位和32位数据总线间的转换
[嵌入式]
高性能FLASH存储器在DSP电机智能保护中的应用
摘要:DSP芯片以其高速、实时性等优点逐步被用到电机保护中,利用高性能外围器件尤其是外围存储器与DSP的硬件匹配是充分发挥其优点的必要条件。文中以基于TMS320C32高速CPU为核心芯片的智能型电机保护装置为模型,介绍了高性能FLASH芯片Am29F010B与DSP芯片的硬件接口电路、软件编程技术以及应注意的问题和设计技巧。 关键词:Flash存储器 DSP 嵌入式算法 Am29F010B 国内的电动机保护装置种类繁多,但随着现代大中型电动机对保护要求的不断提高和VLSI技术的不断进步,传统的基于热敏电阻、机械式继电器和电子式等保护模式均因可靠性不高,容易出现误操作等缺点已不能满足需要;而以单片机为核心的数字或保护装置的运
[工业控制]
基于DSP和CPLD的智能相机系统设计与研制
  0、 引言:   在工业生产中,生产设备的自动化程度在很大程度上决定着生产的效率。同时,高技术高科技的生产设备,对提高的档次也有很大的作用。在工业生产现场,有许多工作是重复简单的劳动,或工作环境是不适合人进行处理的。这时,可以设计一种智能仪器,代替人进行这种简单重复的工作或在恶劣的工作环境下进行工作。智能相机系统就是这样的一种自动化仪器。它以其工作效率高、性能稳定、能适合复杂和恶劣的工作环境而越来越受到工业生产的重视。本文将介绍一款用于工业生产现场产品质量控制的智能相机的设计方案,并给出该相机的实际工作情况。   1、系统整体设计:   进行相机系统设计,首要考虑的问题是工业现场生产速度和相机处理速度的匹配问题。系统
[嵌入式]
基于<font color='red'>DSP</font>和CPLD的智能相机系统设计与研制
MAP-CA宽带数字信号处理器的原理及其应用
摘要:介绍赤道公司(Equator)的MAP-CA宽带数字信号处理器,提出了一种宽带应用中高性能的单芯片解决方案,给出一个应用实例。 关键词:宽带信号处理机 超长指令字 媒体加速处理器 作为消费类电子设备市场上综合宽带数字通讯和媒体处理器核心设备的主要供应商,赤道(Equator)技术公司推出了一款高速宽带数字信号处理器MAP-CABSP,在300MHz的时钟周期运行速度下,其处理能力为30 GOPS(每秒300亿次整数运算),处理速度相当于Pentium III的6.4倍,是其它解决方案的10倍以上。其核心功能是通过软件为高性能、大视频流的宽带应用而设计的。可编程序的芯片允许服务提供者展开更多的服务和功能,如time-shi
[嵌入式]
基于FPGA+DSP+ARM的数据传送总线变换器
  在飞控组件测试时,由于被测系统与上位机有一定距离,如果直接把遥测并行数据传送到上位机,将会出现数据信号的衰减和信号延时问题,有可能使信号时序错位,从而达不到系统测试的要求。为此,需要研制一种数据传送总线变换器,用来完成被测数据无失真的、实时的、远距离与上位机的通信,并能接收上位机的控制指令,实现工作状态的远程交互。    1 数据传送总线变换器的整体设计   综合考虑到测试系统实时性和可靠性的要求,选择以太网口作为数据传送总线变换器与上位机的数据转发接口,以高速串口作为控制口,采用FPGA+DSP+ARM的架构作为实时信息处理平台。   数据传送总线变换器的系统框图如图1所示。其中,FPGA作为数据预处理器,完成并行数据
[嵌入式]
基于<font color='red'>FPGA</font>+<font color='red'>DSP</font>+ARM的数据传送总线变换器
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved