基于DSP和CPLD的智能相机系统设计与研制

发布者:人妙果华最新更新时间:2008-12-12 来源: 微计算机信息关键字:DSP  CPLD  图像处理 手机看文章 扫描二维码
随时随地手机看文章

  0、 引言:

  在工业生产中,生产设备的自动化程度在很大程度上决定着生产的效率。同时,高技术高科技的生产设备,对提高的档次也有很大的作用。在工业生产现场,有许多工作是重复简单的劳动,或工作环境是不适合人进行处理的。这时,可以设计一种智能仪器,代替人进行这种简单重复的工作或在恶劣的工作环境下进行工作。智能相机系统就是这样的一种自动化仪器。它以其工作效率高、性能稳定、能适合复杂和恶劣的工作环境而越来越受到工业生产的重视。本文将介绍一款用于工业生产现场产品质量控制的智能相机的设计方案,并给出该相机的实际工作情况。

  1、系统整体设计:

  进行相机系统设计,首要考虑的问题是工业现场生产速度和相机处理速度的匹配问题。系统的整体设计必须以需要处理的数据量为基础来选择需要的处理器类型、外围接口元器件工作速度、以及选择传感器的型号和参数等 。工业生产速度一般以每分钟多少个产品来计算,必须将其换算为以秒为单位。综合各方面的因素,在本智能相机系统设计中,图像传感器采用美国国家半导体公司(National Semiconductor)生产的CMOS单色VGA格式图像传感器LM9617 ,系统的逻辑控制和地址发生器则采用LATTICE公司生产的CPLD ispLSI1048C ,中央处理器采用美国德州仪器(TI)公司的高速数字信号处理器TMS320VC5402 ,显示器件则采用台湾元太公司生产的液晶显示屏PD064VT5 。在传感器和图像缓存间采用LVDS电平转换以提高长距离传输时的传输能力和抗干扰能力。在选定系统各部分的工作器件后,对系统的整体结构设计如图1所示。

基于DSP和CPLD的智能相机系统设计与研制

                                           图1 系统整体结构简图[page]

  由传感器输出的图像数据和对传感器的控制信号,经过LVDS电平转换后,分别送入到CPLD逻辑缓存控制单元和传感器。CPLD在DSP的控制下,完成对图像的缓存和传输以及传感器的配置。中央处理器DSP对缓存图像进行处理,完成后,将处理结果图像写入到显示缓存中。当处理结果写入完毕后,由显示驱动控制器完成处理结果图像的显示。

  2、系统各部分及功能描述:

  (一)、图像传感器单元:

  图像传感器主要完成光信息信号向电信号转换,从而获得图像信息。考虑到普通的工业生产线的工作情况,在本系统中,图像传感器采用美国国家半导体公司(National Semiconductor)生产的CMOS单色VGA格式图像传感器LM9617,其工作电压为3.3V,有效像元为648×488,像素尺寸可基于DSP和CPLD的智能相机系统设计与研制 。在时钟频率为48MHz时,输出图像为30FPS。由于采用了CMOS工艺,传感器的输出直接是图像的数字信号,输出的图像数据可以是8位、10位或12位。其控制和工作方式配置是在DSP的控制下,通过CPLD和传感器的I2C总线来完成。该CMOS图像传感器采用PLCC48封装基于DSP和CPLD的智能相机系统设计与研制 ,其管脚定义和典型应用电路如图2所示:

基于DSP和CPLD的智能相机系统设计与研制

  图2 LM9617引脚和典型应用电路

  从典型应用电路图可以看出,该传感器外围电路简单,只需少量的阻容元件就可以完成传感器电路的设计。其控制和寄存器的配置通过传感器的相机控制引脚和串行总线(I C)控制引脚进行,也显得简单方便。[page]

  (二)、逻辑和控制单元:

  由于传感器产生的图像数据量很大,每秒产生的数据量为648×488×30Byte,在考虑中央处理器DSPVC5402的处理速度的情况下,决定对图像采取双路缓存,分路处理技术。进行图像缓存时,采用CPLD来实现地址发生器和逻辑控制功能。在本系统中,地址发生器和逻辑控制单元采用LATTICE公司生产的大规模复杂可编程逻辑器件ispLSI1048C来完成。ispLSI1048C是具有8000逻辑门,96个I/O口,12个专用输入口,四个时钟输入口,内部具有288个寄存器和48个GLB单元,其工作时钟可达50MHz 。缓存时,存储器的地址和数据隔离均由1048C来实现。同时,当DSP从缓存中读取数据时,数据信号和地址信号的隔离也由1048C来实现。另外,缓存通道的读写控制逻辑是在DSP的主控下,由1048C来完成,并实现和DSP进行数据缓存通信。该部分的设计如图3所示:

基于DSP和CPLD的智能相机系统设计与研制

  图3 逻辑控制单元结构简图

  系统上电初始化后,由DSP向1048C发出写图像命令,1048C接到命令后,先根据场信号判断是否为一帧图像到来,然后根据像素时钟和行信号产生地址,对图像进行缓存。当一幅图像缓存完毕后,向DSP发出图像缓存完毕信号。DSP在接到图像缓存完毕后,一方面,控制1048C继续对下一帧图像进行缓存,另一方面,对缓存完毕后的图像进行检测。

  (三)、中央处理单元:

  中央处理单元是系统的核心部分,它涉及到系统工作效率、稳定性等问题。在综合考虑系统的处理速度、数据量、控制复杂度、系统设计复杂性、算法复杂性以及系统成本等因素后,本文选用美国德州仪器公司(TI)生产的高速数字信号处理器TMS320VC5402作为中央处理器,其工作频率可以达到100MHz,指令运行可达100MIPS ,能满足通常数字信号处理的需要。[page]

基于DSP和CPLD的智能相机系统设计与研制

  图4 中央处理单元结构简图

  在系统设计时,对DSP程序进行了优化设计,其程序储存器采用Atmel 公司生产的FLASH AT29LV020 ,其大小为256K×8Bit,在运行时采用8Bit并行加载模式进行加载。同时考虑到要对处理结果进行实时显示,并考虑到显示过程,系统设计时采用了1M×8Bit的显示缓存。并将该缓存作为了系统的数据缓存器,在设计时将该部分缓存加在了显示控制部分,中央处理单元部分的结构如图4所示。

  (四)、显示控制单元:

  图像显示部分采用液晶显示屏来完成。液晶显示具有稳定可靠、功耗小、结构紧凑、显示内容丰富的特点,在嵌入式系统的开发设计中常用来作为人机界面并获得了广泛的应用。

  在本系统中,要显示的是灰度位图,根据实际情况,图像的灰度级控制为256级,即8Bit。由于目前市场上没有能显示256灰度级的液晶屏,在系统设计时,采用了台湾元太公司生产的6.4’真彩色液晶屏PD064VT5,分辨率为640×480,刷新率为60Hz,其显示可达256K 色。在设计时,根据RGB到YUV的转换,将液晶屏的G通道和B通道并行接到了R通道上,实现了显示64级灰度图。驱动控制器由作者自行开发,其结构如图5所示。

基于DSP和CPLD的智能相机系统设计与研制

  图5 显示驱动控制单元

  设计显示驱动控制电路时,控制和逻辑发生器、地址发生器单元仍采用1048C来实现,帧缓存器I和II的容量均为512K×8Bit。在显示时帧缓存器I和II是作为显示缓存来使用,在进行算法处理时,帧缓存器I和II则是作为数据缓存来使用。其逻辑控制均采用1048C来完成。[page]

  电源部分是系统中较重要的部分。整个系统采用线性电源供电。其中,传感器采用3.3V供电,CPLD1048C采用5V供电,DSP采用电源模块TPS767D301供电,液晶显示屏则采用5V和12V混合供电。这里不再详述。

  3、系统实现:

  在完成整个系统的设计后,我们对系统进行了实现,并将该智能相机系统应用在了纸品质量监测线上,主要完成纸品中瑕疵点或污渍点的检测。如发现纸品表面存在瑕疵,则给出纸品不合格信号。在图像处理算法并不复杂时,系统可以做到实时工作,到达30FPS。在添加一些较复杂的处理算法后,系统可以工作在15FPS,换算到工业生产速度为900个产品每分钟。这在一般的工业生产中,已经完全能满足生产需要了。图6给出了应用在检测线上后,检测出不合格纸品的一个典型例子:

基于DSP和CPLD的智能相机系统设计与研制   

  (a)原始污渍图像        (b)检测算法处理结果

  图6 检测结果

  在检测结果中,给出了瑕疵或污渍点的大小和位置信息,并根据实际要求,给出该单个产品是否合格的信号。

  4、结论:

  智能相机是国内一门新兴的实时图像研究处理方向,它结合实时图像处理、微电子技术、传感器理论等多门学科,其设计和应用具有一定的难度和复杂性。但由于其具有广阔的应用前景,必将越来越受到人们的重视。

  本文给出了一种较通用的智能相机的设计方案并实现了整个系统的硬件和软件设计,实践证明,该方案切实可行,按照该方案研制的相机系统工作速度快,性能稳定可靠,并已取得了实际应用。

关键字:DSP  CPLD  图像处理 引用地址:基于DSP和CPLD的智能相机系统设计与研制

上一篇:一种基于CPLD的PWM控制电路设计
下一篇:基于CPLD的移相全桥软开关电源数字控制器

推荐阅读最新更新时间:2024-05-02 20:44

仪器和测量技术中的DSP
概述 所谓信号处理是指对信号进行滤波、变换、分析、加工、提取特征参数等的过程。在电子仪器和测量中,最典型的是用频谱分析仪对信号进行频谱分析,从而了解和取得信号的频率(或频谱)特性。在现代计算机和相关的技术发展起来以前,这一过程只能用以硬线技术构成的传统的频谱分析仪实现。众所周知,这种传统的频谱分析仪,无论在设计制造还是所采用的元器件方面,都要求较高的水平。尤其是频率范围宽、指标高的,设计制造的难度就更高,而其价格也非常昂贵。但是,自从计算机及随之而兴起的数字信号处理(即DSP〉技术日趋成熟和发展起来以后,解决信号频谱分析的途径,正在逐步由DSP所取代。 关于离散傅立叶变换和数字滤波 作为信号处理,和频谱分析最直接相关的是傅立叶(Fo
[测试测量]
基于DSP的车辆碰撞声检测装置的设计
   1 硬件设计 我们设计的碰撞检测装置的原理框图如图1所示,首先采用声音传感器采集各种声音信号,传感器输出的电信号经放大电路放大后,传入声音采集芯片的模拟信号输入端。声音采集芯片将模拟信号进行A/D转换后,送到DSP模块做进一步处理。DSP模块实时地处理所采集到的声音信息,判断是否有车辆碰撞事故发生。存储器模块和DSP模块相连,用于储存需要处理的数据和固化的代码数据,并为DSP模块运算时提供临时存储空间。报警模块和通讯模块与外部救援中心相通讯,一旦DSP模块检测到车辆发生碰撞事故,报警模块就向外发送报警信息。下面分别介绍主要模块功能。     1.1 声音采集模块 声音采集模块使用电容式声音传感器,采样
[嵌入式]
赛普拉斯新型West Bridge控制器提供最快速数据通讯能力
2007年12月7日,北京讯—— 赛普拉斯今天前推出了一款具备多层单元(MLC)NAND闪存支持能力的新型West Bridge外设控制器,可为设计者采用成本最低、密度最高的闪存存储器提供支持。这款West Bridge Astoria控制器最高支持16个MLC NAND闪存设备,而MLC NAND闪存与相同存储密度的单层单元(SLC)NAND闪存相比,其成本降低了三倍。 新款控制器提供了与West Bridge Antioch控制器相同的领先业界的高速USB数据传输性能。在最近一项对顶级多媒体手机的数据传输性能进行的对比中,Semiconductor Insights发现,使用Antioch控制器的手机,其文件传输速率要比其它
[新品]
DSP里的数据类型,你都认得它们么
   DSP 的 C/C++ 编程时有多少种 数据类型 ?float,double和long double,long和long long这些绕口的名字究竟有什么区别? 数据类型 使用不正确又会有什么后果?如果你感觉说不清楚,那我们来看看这些到底都是何方神圣吧: 表1 C28x C/C++ 支持的 数据类型 Ø 64位整数的处理   从上面的表中,可以看出C28x的编译器是支持64位的整数类型的,这使得在处理某些高精度智能编码器的反馈数据时特别方便,因为在更老的不支持64位整数类型的器件上编程时,需要我们自己定义64位类型,在运算时要自己定义运算规则才行。一个long long类型的整数需要使
[嵌入式]
<font color='red'>DSP</font>里的数据类型,你都认得它们么
采用DM642的EDMA图像处理系统
 1 前言   DM642 ( TMS320DM642 )型处理器是TI最新推出的面向多媒体处理领域的数字信号处理器(DSP).给多媒体设备的实现提供了另一种有效的手段。 DM642建立在C64x DSP核基础上.采用 德州仪器 公司开发的第二代高性能的先进的超长指令字结构VeloeiTl.2TM,在600MHz的时钟频率下.DM642每秒可以进行24亿次16位的乘累加或48亿次的8位的乘累加。这样强大的运算能力使得DM642可以进行实时多视频图像处理。它的增强型直接内存存取 (EDMA)对DSP图像处理系统是非常重要的,它可以在没有CPU参与的情况下完成映射存储空间中数据搬移。灵活使用EDMA可以大大提高数据传输效率
[工业控制]
基于ARM与DSP的嵌入式运动控制器设计详解
引言 运动控制系统广泛地应用于工业控制领域,而嵌入式技术在工业控制领域的应用还不太成熟,近年来,工业控制对运动控制系统的要求越来越高,为了满足新一代运动控制系统的各项性能要求,嵌入式运动控制器应运而生。基于ARM与DSP运动控制芯片相结合的新一代运动控制系统,充分发挥ARM微控器与专业运动控制芯片MCX314As的各自特点,可方便的构成高性能的嵌入式运动控制系统。 运动控制芯片MCX314As MCX314As是日本NOVA电子有限公司的DSP运动控制专用芯片,它是控制4轴的脉冲序列输出驱动伺服电机、步进电机的运动控制芯片,可用于工业自动化设备、工业机器人、测量设备、办公设备和家用电器等。可以进行各轴独立的定位控制、速度控制,
[单片机]
基于ARM与<font color='red'>DSP</font>的嵌入式运动控制器设计详解
CEVA授权瑞萨电子将旗舰DSP用于下一代智能运输系统
全球领先的硅产品知识产权(SIP)平台解决方案和数字信号处理器(DSP)内核授权厂商CEVA公司宣布,先进半导体解决方案的顶级供应商瑞萨电子公司(Renesas Electronics Corporation)已经获得CEVA-XC DSP授权许可,助力用于智能运输系统(Intelligent Transport Systems, ITS)的新一代无线通讯系统级芯片(System-on-Chips, SoC)。CEVA-XC内核具有可编程特性,使得瑞萨电子能够创建提供超高性能且只需最小功耗的软件定义无线电(software-defined radio, SDR) SoC产品。 瑞萨电子第一解决方案业务部汽车解决方案事业部主
[嵌入式]
基于DSP的直接转矩控制系统的设计与实现
    摘要: 开发了一种基于TMS320F240 DSP实现电机交流调速的直接转矩控制系统,介绍了系统的设计方案和软硬件的实现方法。实验结果表明,系统具有良好的性能。     关键词: 数字信号处理器 直接转矩控制 交流调速 异步电动机 随着电力电子和计算机技术的发展,高性能的异步电动机调速系统得到了广泛的应用。而高性能的交流调速系统,都离不开数字信号处理器。以往的数字信号处理速度很快,但控制功能较差。新型的F24X/C24X系列DSP是TI公司专门为三相交流调速开发的数字马达调速控制器,它既具有通用DSP的快速性,又兼有三相交流调速的控制功能。本文根据异步电动机直接转矩控制原理,开发出了基于TMS3
[传感技术]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved