基于FPGA的RFID板级标签设计与实现

发布者:平和梦想最新更新时间:2012-02-04 来源: 中国电子科技集团 关键字:FPGA  RFID  板级标签 手机看文章 扫描二维码
随时随地手机看文章

引 言

射频识别(Radio Frequency Identification,RFID)技术是一种新兴的非接触式自动识别技术,在工业自动化、商业自动化、交通运输控制管理、防伪及军事等众多领域都有广泛的应用前景。它利用无线射频方式进行非接触双向数据通信,以达到目标识别并交换数据的目的,可用来跟踪并管理几乎所有的物理对象。RFID电子标签已经成为21世纪全球自动识别技术发展的主要方向。目前,RFID已经得到了广泛应用,且有国际标准ISO10536,ISO14443,ISO15693,ISO18000,EPC Global等几种。其中,ISO18000-6C属于超高频射频识别技术标准,它融合了EPC C1G2标准。该标准的特点是速度快,可以同时读取的标签数量多,理论上能读到1 000多个标签;功能强,具有多种写保护方式;安全性强。

在我国,由于射频识别技术起步较晚,应用的领域不是很广,主要的应用是基于中低频的应用,包括车辆管理、门禁管理等。目前,超高频射频识别技术及其应用在我国正处于初级发展阶段,国内目前还没有成熟的超高频电子标签芯片设计技术。

在此,首先介绍电子标签的工作原理及ISO18000-6C标准,并根据ISO18000-6C标准,设计了实现超高频电子标签验证平台的整体电路。重点讨论基于EP1C6Q240FPGA的数字基带部分设计与实现。最后给出了该平台的测试结果,验证了平台设计的正确性和可靠性。


1 电子标签的工作原理

射频识别系统通常由读写器(Reader)和射频标签(RFID Tag)构成。附着在待识别物体上的射频标签内存有约定格式的电子数据,作为待识别物品的标识性信息。读写器可无接触地读出标签中所存的电子数据或者将信息写入标签,从而实现对各类物体的自动识别和管理。读写器与射频标签按照约定的通信协议采用先进的射频技术互相通信,其基本通信过程如下。

    (1)读写器作用范围内的标签接收读写器发送的载波能量,上电复位;
    (2)标签接收读写器发送的命令并进行操作;
    (3)读写器发出选择和盘存命令对标签进行识别,
选定单个标签进行通信,其余标签暂时处于休眠状态;
    (4)被识别的标签执行读写器发送的访问命令,并通过反向散射调制方式向读写器发送数据信息,进入睡眠状态,此后不再对读写器应答;
    (5)读写器对余下标签继续搜索,重复(3),(4)分别唤醒单个标签进行读取。直至识别出所有标签。

标签向读写器传送数据是通过反向散射调制技术,对于无源电子标签,其本身没有足够的发射能量,所以通过改变天线的匹配阻抗控制天线的反射强弱,阻抗不匹配时天线反射率很大,阻抗匹配时天线反射率很小,以此来表示输出信号的有无。


2 ISO18000-6C标准

ISO18000-6c标准为:

工作频率 标签应能够在860~960 MHz的频率范围内接收从读写器发出的功率并能够与读写器通信。

调制 读写器应采用DSB-ASK,SSB-ASK或PR-ASK调制方式进行通信。标签应该能够解调上述3种类型的调制。标签反向散射应采用ASK或PSK调制。标签商选择调制形式。读写器能够解调上述2种调制。

数据编码 读写器到标签的链路应采用PIE编码,标签将反射散射的数据编为该数据速率的副载波FMO基带或Miller调制。读写器发出编码选择的命令。

数据速率 读写器到标签的数据速率根据Tari值进行选择,数据速率可以从40~640 Kb/s。标签的反射速率由下面两个公式共同决定:

    [page]

3 RFID板级标签验证平台的总体设计与实现
    板级标签主要由模拟射频和数字处理2部分组成。图1为板级电子标签验证平台的结构框图。

模拟射频部分采用分立元件实现,完成射频信号的接收,来自RFID读写器的信号通过天线和阻抗匹配网络,经过915 MHz的声表面滤波器滤波,进行包络检波后,通过一个运放构成的一阶有源低通滤波器,再由电压比较器完成高低电平的判决。数字部分由EP1C6Q240FPGA实现,完成ISO18000-6C协议处理,EP1C6Q240FPGA接收来自前端的TTL电平,完成PIE解码、CRC校验、命令解析、状态转移、数据存储、FMO编码等功能。FMO编码通过反相散射调制输出,改变天线的反射阻抗实现。

数字基带部分的设计在Altera公司的EP1C6Q240FPGA上实现。经过对协议内容的深入研究,实现标签数字部分采用Top-down的设计方法,首先对电路功能进行详细描述,按照功能对整个系统进行模块划分;再用Vexilog硬件描述语言进行RTL代码设计。数字基带结构框图如图2所示,它包括译码模块、循环冗余校验(Cyclic Redundancy Check,CRC)校验模块、状态机模块、CRC产生模块、存储器、编码模块和时钟分频模块。译码模块接收模拟部分解调出的命令信号,根据协议中规定的命令格式将信号译码成标签数字部分可识别的二进制数据,并发送到CRC校验模块和状态机模块。CRC校验模块对收到的命令进行完整性校验,若确认为有效命令,则触发状态机模块,控制标签执行相应操作,如读写存储器、防冲突控制等。处理完成后,则将要发送的数据送至CRC:产生模块产生相应的CRC校验码,然后将要发送的数据和校验码一起送至编码模块,最后由编码模块以特定的脉冲形式发送给模拟部分进行处理后,再采用射频技术发送给读写器。

[page]

4 测试结果

QuartusⅡ6.0是Altera FPGA/CPLD的综合性集成设计平台。该平台集成了设计输入、仿真、逻辑综合、布局布线与实现、时序分析、芯片下载与配置、功率分析等几乎所有设计流程所需的工具。Verilog HDL程序在QuartusⅡ6.O环境下编译、仿真和下载,板级标签经过总体设计、PCB板设计与实现、代码设计、仿真与下载,以及系统调试后,能够与支持ISO18000-6C标准的读写器(Cetc7 Rlid Reader V 1.O)进行通信,快速准确地收发信息,并实现防冲突功能。图3显示板级标签能够解码来自阅读器的命令信息,在状态机的控制下,正确地输出FM0编码信号。图4显示板级标签能够支持ISO18000-6C标准的阅读器正确读取(读取到的EPC码与标签一致),读取效果良好(73次/10 s),读取性能稳定。测试表明,板级标签能够实现ISO18000-6C标准中的读写功能,标签工作性能稳定,可靠性都能达到预期的效果。

5 结 语

根据ISO18000-6C标准,采用EP1C6Q240FPGA以及模拟射频分立元件,经过总体设计、PCB板设计与实现、代码设计、仿真与下载,以及系统调试后,完成了基于FPGA的板级标签的软、硬件设计与实现。该系统通过测试,已能够正常工作,读写性能优异,并实现了防冲突功能。在此基础上可以进一步提高其安全性和可靠性,所设计的标签数字电路RTL代码能够直接应用到标签芯片开发中,为下一步设计出符合该标准的电子标签芯片提供了有力的保证。

关键字:FPGA  RFID  板级标签 引用地址:基于FPGA的RFID板级标签设计与实现

上一篇:CAN总线在汽车控制系统中的研究与应用
下一篇:基于LT3782的大电流升压电路设计

推荐阅读最新更新时间:2024-05-02 21:53

英特尔AGILEX FPGA如何与CXL相互相容
自从英特尔几年前以167亿美元的价格收购Altera以来,FPGA产品组合的推出基本上是英特尔时代之前的产物。然而长时间未有强有力的产品推出,致使Altera原有市场被赛灵思等主要竞争对手所蚕食。不过这几年的时间,英特尔也并没有闲着,而是在花时间和精力进行与Altera的内部技术整合。 2019.4.2号这一天,英特尔宣布了其首款完全由其独立设计的FPGA,基于其内部10nm工艺,使用全新Agilex命名。这一系列新产品将于今年晚些时候推出样片,并在一个单一的平台上提供模拟、数字、内存、定制IO和eASIC变体的混合。 在新的Intel Agilex FPGA设备中包含的许多创新,包括了一个高带宽、低延迟的计算快速链接(C
[嵌入式]
英特尔AGILEX <font color='red'>FPGA</font>如何与CXL相互相容
Intel开放式FPGA堆栈,为高性能负载提供动力
在英特尔FPGA技术大会上,英特尔发布了最新的英特尔®开放式FPGA开发堆栈(英特尔®OFS)。通过可拓展的硬件,以及可访问的git源代码库的软件框架,英特尔®开放式FPGA开发堆栈(英特尔®OFS)让软硬件及应用开发人员能更轻松地创建定制加速平台与解决方案。此外,英特尔®OFS提供标准接口和API,实现更高的代码可重用率,加速了开发与快速部署。 英特尔公司副总裁、可编程解决方案事业部总经理Dave Moore表示:“FPGA一如既往地为开发人员创建定制化硬件提供支持, 为从边缘到云端的工作负载提供卓越的性能、功耗效率及总体拥有成本。今天,我们激动地宣布推出英特尔®开放式FPGA开发堆栈。经过早期客户的成功案例验证了英特尔®开
[嵌入式]
Intel开放式<font color='red'>FPGA</font>堆栈,为高性能负载提供动力
莱迪思和FLEXIBILIS宣布推出支持HSR (IEC 62439-3) 协议的首个FPGA以太网交换IP核
    莱迪思半导体公司(NASDAQ: LSCC)和Flexibilis Oy今日宣布了即可获取Flexibilis以太网交换(FES)IP核。三速(10Mbps/100Mbps/1Gbps)FES IP核工作在以太网第2层,每个端口具有Gigabit的转换能力。支持Gigabit光纤和Gigabit双绞线铜以太网接口。支持的服务质量高达每端口四个队列。这些以太网交换IP核有五个版本,根据端口数和功能而不同:    •6-port FES – HSR (QuadBox)   •4-port FES – HSR (End-node / RedBox)   •8-port FES   •4-port FES   •3-port FES
[嵌入式]
基于USB和DSP的数据采集系统的设计
摘 要: 介绍了一种利用USB2.0的高速传输特性,基于USB和DSP的数据采集系统。详细论述了系统的总体结构、部分硬件设计,并简要叙述了相应固件程序的实现。 关键词: USB DSP FPGA 高速传输 测量仪器一般由数据采集、数据分析和显示三部分组成,而数据分析和显示可以由PC机的软件来完成,因此只要额外提供一定的数据采集硬件就可以和PC机组成测量仪器。这种基于PC机的测量仪器被称为虚拟仪器 。而在一些数据量比较大、采集时间比较长的场合,就需要采用高速的数据传输通道。基于虚拟仪器的思想和高速传输通道的要求,设计了一种基于DSP和USB2.0的高速数据传输接口。 1 数据采集系统硬件 数据采集系统由A/D数据采集单元、US
[嵌入式]
基于USB和DSP的数据采集系统的设计
Mouser代理Actel的FPGA产品, 满足小批量采购需求
电子元器件目录分销商Mouser Electronics公司日前表示,已经与Actel公司签署全球分销协议,代理后者的非易失性现场可编程门阵列(FPGA)产品。 该协议扩充了Mouser与Actel现有的分销合作关系,可以为潜在的客户提供更广泛的产品选择。据称,Actel的客户将能够通过Mouser的印刷产品目录或者浏览网站,获得Actel的产品信息。 Actel销售和市场高级副总裁Dennis Kish表示,“在全球范围内,客户可以通过信用卡支付,在24~48小时之内采购到小批量板级元器件,并开始着手他们的设计。这个需求目前已经开始显现,而非可有可无。” “通过利用Mouser的在线全球分销能力,我们能进一步扩展Actel
[焦点新闻]
基于CPLD的MIDI播放器设计方案
引言 大规模可编程逻辑器件 CPLD 和 FPGA 是当今应用最广泛的两类可编程逻辑器件,电子设计工程师利用它可以在办公室或实验室设计出所自己所需要的专用芯片和专用产品,从而大大缩短了产品上市时间,降低了开发成本。此外,可编程逻辑器件还具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改,这样就极大的提高了电子系统设计的灵活性和通用性。 1 工作原理 MIDI音乐是Windows下的一种合成音乐,由于它通过记谱的方式来记录一段音乐,因此与wave 音乐相比,它可以极大的减少存储容量。MIDI音乐的基本原理:组成乐曲的每一个音符的频率值(音调)及其持续的时间(音长)是乐曲能连续演奏的两个基本数据,因此
[嵌入式]
基于FPGA的自适应数字传感器设计
摘要:高量程加速度传感器在小信号的激励下输出在10 mV以内,传统测试系统的噪声可能覆盖如此小的电压信号,使高量程的加速度传感器无法测试小的加速度信号。针对这一问题提出了基于自动增益切换控制理论的自适应数字传感器,该传感器能够根据加速度信号的输出电压自动选择最佳的电压增益,使高量程加速度传感器始终保持从低量程到高量程的完整加速度信号输出,拓宽了加速度传感器的动态测试范围。 关键词:高量程;加速度传感器;小信号;自适应;数字传感器 高量程加速度传感器的一般灵敏度在1 mV左右,如果加速度信号在1g~10g的范围内,则传感器的输出在1 mV~10 mV,传统测试系统的噪声就可能覆盖如此小的电压信号,那么将会无法测到完整的加速度
[嵌入式]
基于<font color='red'>FPGA</font>的自适应数字传感器设计
基于FPGA的DDS 信号发生器(三)
1 DDS原理 1.1 书上的解释 DDS(Direct Digital Synthesizer)技术是一种全新的频率合成方法,是从相位概念出发直接合成所需波形的一种频率合成技术,通过控制相位的变化速度,直接产生各种不同频率、不同波形信号的一种频率合成方法。 系统的核心是相位累加器,其内容会在每个时钟周期(system clock)更新。相位累加器每次更新时,存储在Δ相位寄存器中的数字字M就会累加至相位寄存器中的数字。假设Δ相位寄存器中的数字为00…01(即M=1),相位累加器中的初始内容为00…00。相位累加器每个时钟周期都会按00…01(M=1)更新。如果累加器为32位宽,则在相位累加器返回至00…00前需要2^32(超过
[测试测量]
基于<font color='red'>FPGA</font>的DDS 信号发生器(三)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved