马达设计原理及元件安装需考虑的因素

发布者:和谐的24号最新更新时间:2012-02-25 来源: 飞兆半导体公司 关键字:马达  调速驱动  变频器 手机看文章 扫描二维码
随时随地手机看文章

现今的可调速驱动电路都采用变频器来调整输出电流,以满足三相马达的要求。变频器的形状大小通常会受到应用的限制。在许多情况下,电路板与马达靠得很近,而马达构造的高度也会受限。另外,所用高功率半导体器件的物理性质和所选封装的形状,也要求电路板上有足够的位置空间。功率半导体开关工作期间产生的电压、电流交叠会造成损耗,必须将其消除。虽然功率耗散问题可以通过加设散热片而得到改善,但这也会限制半导体器件在电路板上的布局安排。

变频器是达到EcoDesign节能要求的关键技术。美国电力科学研究院(Electric Power Research Institute)的研究表明,采用变频器的马达比无变频器的马达节能多达40%。无论是感应马达、永磁同步马达,还是无刷直流马达,都可由变频器为其产生正弦电流。为此,开关频率必须比变频器的可调输出频率高几个数量级。而经脉冲宽度调制的输出电压则会施加在电感性负载上。因此,输出电流与电压的平均值成正比。开关频率越高,对变频器越有利;而驱动的扭矩波动越小,动态响应性能便更高,噪声也会变得更低。这就要求开关速率快,而开关速率快意味着di/dt和dv/dt的变化率通常都很高。因此,电路寄生就成为一个大问题,设计人员必须努力解决这个问题,才能满足目前和未来的EMC标准要求。

成本是电路布局必须考虑的另一个约束因素。许多情况下,都采用双面电路板。而电路板上的不同区域常常只能使用一种焊接工艺。因此,就提高成本效益而言,表面贴装半导体器件是越来越受欢迎的解决方案。

设计考虑因素

目前,大功率半导体器件(如IGBT和MOSFET)的发展趋势是在提升性能的前提下不断缩小芯片尺寸。减小芯片尺寸能减少器件的寄生电容,从而提高开关速率。因此,深入研究电路板上的关键回路越来越重要。图1为电压源变频器(voltage source inverter,VSI)的两种典型开关工作方式的简化示意电路。在开关频率受限的大电流应用中,IGBT是最受欢迎的器件。上图所示为从高压侧(HS)续流二极管到低压侧IGBT的换流。电流最初是在高压侧二极管和相应反相半桥的IGBT形成的续流通道中。

图1   简化的换向电路

一旦低压侧栅极驱动电路导通了IGBT,就会有短路电流经过高压侧二极管和低压侧IGBT。其结果是二极管电流降低,IGBT电流相应增加(自然换相:1〜2),在开关期间,电感性负载的电流可视为常数。因此,杂散部件与该通道无关。开关速率由低压侧IGBT的导通和半桥的杂散电感来决定。要实现从低压侧IGBT到高压侧续流二极管的反向换流,低压侧IGBT上的压降必须大于直流总线电压,以导通续流二极管。因此,IGBT在与二极管换流(强制换相:2〜1)之前必须能同时承受高电压和大电流。

在图1中,电压源变频器的临界电流路径被标为红色阴影,其特征是di/dt变化率高,这个特征也表现在对应的栅极驱动电路上。要保证栅极驱动电路安全的工作,就要最大限度地减小杂散电感。尤其是高压侧栅极驱动电路,存在一个由低压侧二极管和电流通道上的阻性和感性压降所引起的,且幅度超过VS最小允许电压的负压,会导致电路工作异常。

其中一个解决方法是通过增加栅极电阻来降低开关速率,然而这却会大幅增加开关损耗。在这情况下,便需要优化电路板布局,充分利用电压源变频器的整体性能。为了去除功率区和信号区的耦合,两个区域的接地应当分开。栅极驱动器应尽可能靠近IGBT,且不要有任何回路或偏差。微控制器和栅极驱动之间的信号通道不是非常关键的。分立的IGBT管脚引线应尽可能短,以最大限度地减少寄生电容和电感。封装在一起的6个IGBT和栅极驱动器的安排需要周密考虑。此外,散热片上的器件需要配备适当的绝缘片。许多情况下,电路板的边沿都需要有大块的散热片。

为了克服以上约束,最好采用智能功率模块(intelligent power module (IPM),也称为Smart Power Module(SPM®))。图2所示为一个典型的全封闭模块,它包含一个完整的三相电压源变频器,以及相应的栅极驱动器和保护电路。采用这种模块比分立元件方案节省电路板空间多达50%。尤其是这种模块需要的外接部件极少,在设计上就考虑了EMC的要求。其峰值和平均EMC干扰强度比传统设计低很多。

图2 智能功率模块

与电压源变频器的分立元件方案类似,采用智能功率模块时也要注意外部元件的布局安排。图3所示为针对Motion-SPMTM应用的一些建议。由于电压源变频器的开关速率很快,信号接地和功率接地必须分开。两种接地在15V Vcc电容处互接。Vcc电容和功率接地之间的通道要狭窄,以去除耦合。为防止电涌造成破坏,引脚P与功率接地之间应当有一个低电感电容。另外,由于电压源变频器和马达之间的长引线会造成高压反射,因此一些SPM产品配备了外接栅极电阻来调节开关速率和最大限度地减少反射。

图3  布局建议

图4  模块安装翘曲的夸大示意图

元件安装考虑因素

除TinyDIP/SMD外,SPM的表面都会有一定的翘曲。图4为这种翘曲的一个夸张示意。模块是用一些从表面中间穿出的螺丝紧固在散热片上。如果安装恰当,这种凸状表面能保证有足够的热量从模块传递到散热片。如果紧固螺丝用力不均,就可能在模块内产生应力,导致模块破损或性能下降。建议采用图4所示的螺丝紧固顺序(先按1〜2的顺序预紧固,再按2〜1的顺序最终紧固)。通常,预紧固扭矩为最大额定紧固扭矩的25%。只要散热片与器件紧贴好了,就可通过SPM的内置热敏电阻获取散热片的温度,从而简化电路板的设计。

关键字:马达  调速驱动  变频器 引用地址:马达设计原理及元件安装需考虑的因素

上一篇:基于LD332O语音识别专用芯片实现的语音控制
下一篇:无刷电机原理图解法

推荐阅读最新更新时间:2024-05-02 21:55

变频器速度不稳定是什么原因_两个不同的变频器怎么同速
  变频器速度不稳定是什么原因   变频器速度不稳定可能有多种原因,常见的包括:   负载变化:当负载变化较大时,会引起变频器输出电压或电流波形的变化,从而导致输出转速不稳定。   PID参数设置不合理:PID参数设置不当也会导致转速不稳定,如比例系数、积分时间、微分时间等参数设置过大或过小。   反馈信号问题:变频器通过反馈信号来感知电机的实际运行情况,如果反馈信号异常或者损坏,也会导致转速不稳定。   电源问题:输入电源的电压稳定性不好、电源线路接触不良或电源波形不纯也会导致输出转速不稳定。   变频器故障:如IGBT模块损坏、电容老化、电机驱动电路故障等也会导致转速不稳定。   对于变频器转速不稳定的问题,需要通过仔细检查和
[嵌入式]
如何轻松解决变频器干扰问题
变频器的干扰问题出现的比较多,且比较严重,甚至导致控制系统无法投入使用,这一直是个很困扰的问题,接下来萨顿斯带您看看如果轻松解决变频器干扰问题。首先我们先来了解一下变频器干扰的常见现象 1.换热站变频器一开,压力变送器就乱跳。 2.用变频器控制供水当中,压变作为采集压力的信号,压变受变频器干扰。 3.当变频器启动电机时,压变信号不稳,跳动厉害。 4.压变(4-20mA)在变频器启动后乱跳,而附近的一体化热电阻(4- 20mA)却不受影响,信号线都没有屏蔽。 出现这些现象,都是由于受到了变频器的干扰。 为什么变频器会产生干扰? 变频器是用来改变频率的,变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换
[嵌入式]
变频器的使用方法与参数调整
  变频器的使用方法及参数调整   变频器是用来调整异步电机转速的一种电源装置,根据转速n=60f/p(1-s)这个公式,变频器本质是输出频率可调的电压源,通过改变电源频率来改变电机转速,而频率改变的同时,为了避免磁通饱和导致电机过热,还要跟着改变电压,也就是保持V/F比值恒定变频器是为电机服务的,变频器和电机要配套使用,也就是两者的额定电压和额定功率要非常接近。而电机运行过程中,要避免电流过大而发热烧坏,需要设置一些相关的保护参数。 一、变频器参数设置操作步骤说明书步骤说明如下: 1、“恢复出厂设置”:上电后进行一次恢复出厂设置,为了避免变频器存在一些以前设置过的参数(当然若是全新变频器是不存在此问题的); 2、“设置电机类
[嵌入式]
变频器外部控制接线图
  变频器外部控制接线图   打开变频器的控制面板,我们会发现,面板的下面是一排接线端子,我们所有对变频器的连线,都是从这一排接线端子引出来的。   一、具体连线   变频器的控制面板下面是一排,接线端子,我们所有对变频器的连线都是从这一排接线端子引出来的,但变频器的控制面板是不能频繁的拆却的。   1、连接外部按钮   端子CM(黄线)、REV(蓝线))、FWD(绿线)接按钮开关,其中黄线CM为公共端子,具体连线方法如下图所示:   2、连接电位器   电位器的1、2、3三个端子,分别接到变频器的10V、AN1与GND,其中,AN1接电位器的中间的端子,变频器在正常工作过程中,电位器两端有10V的电压。   3、
[嵌入式]
<font color='red'>变频器</font>外部控制接线图
一种小功率通用变频器的设计
0 引言      由于电力电子技术的飞速发展,交流变频调速已上升为电气传动的主流,正在逐步取代传统的直流传动。而从性价比的角度来看,交流变频调速装置已经优于直流调速装置。      异步电机的变频调速不仅可以实现平滑调节,还有着许多其他交流调速系统不可比拟的优点:交流变频调速在频率范围、动态响应、调速精度、低频转矩、转差补偿、通信功能、智能控制、功率因数、工作效率、使用方便等方面的优势是其他的交流调速方式难以达到的,并以体积小、重量轻、通用性强、保护功能完善、可靠性高、操作简便等优点,深受钢铁、冶金、矿山、石油、化工、医药、纺织、机械、电力、轻工、造纸、印刷、卷烟、自来水等行业的欢迎,社会效益非常显著。      变频调速虽
[电源管理]
掌握MCU软件设计准则 实现直流马达控制精准度提升
300瓦以下的小功率马达适合以MCU做为控制方案,在各家MCU硬件规格差异化日渐缩小之下,软件演算设计就显得相形重要,若能掌握MCU控制各种直流马达的软件设计原则,将能大幅提升马达控制的精准度。 运作在300瓦(W)以下的小功率马达被广泛应用于各类应用,例如汽车系统、打印机、复印机、碎纸机、玩具、工厂自动化、测试设备、机器人技术、航空航天与军工等。最流行的小功率马达类型是直流(DC)马达、无刷直流马达(BLDC)和步进马达。马达的产量大致与功率大小成反比,量产的小功率马达数量远远高于大功率马达数量。 专用于马达控制的数字信号处理器(DSP)设计主要在满足大型脱机式马达的需求。脱机马达通常为交流(AC)感应或无刷直流马达,运行在11
[单片机]
掌握MCU软件设计准则 实现直流<font color='red'>马达</font>控制精准度提升
变频器改造成UPS的可行性
随着科学技术的高速发展,人民生活水平的不断提高,人们对建筑物内的环境、使用功能、消防安全等提出了更高的要求。越现代化的建筑对电的依赖越高,但电力故障是不以人的意志为转移,一旦发生灾害事故将导致电力中断或电力中断后发生灾害事故,人民的生命财产安全将直接受到威胁。因此,《高层民用建筑设计防火规范》和《民用建筑电气设计规范》中严格规定:一级负荷中特别重要的设备必须增设二路电源。目前,市场上常用的备用电源有 发电机组 、UPS、EPS等产品,至于它们三种供电方案以及衍生方案并不能保证电源100%不间断。本文的内容是笔者根据工作几年来从事EPS及UPS项目总结出来的。    1、解决问题的方法   变频器无论是频率控制型还是矢量控制型或者
[电源管理]
将<font color='red'>变频器</font>改造成UPS的可行性
变频器的基本原理、分类及应用领域
引言 变频器(Variable-frequency Drive,简称VFD)是一种电力控制设备,通过改变电机工作电压和频率来实现对电机运行速度的调节。自20世纪70年代以来,变频器在众多领域得到了广泛应用,如工业生产、交通运输、家用电器等。本文将对变频器的基本原理、分类及应用领域进行详细介绍。 一、变频器的基本原理 变频器的工作原理是基于交流电动机的转速与供电频率之间的关系。当供电频率不变时,电动机的转速也保持不变;而当供电频率增加时,电动机的转速会相应降低。这是因为电动机的电磁转矩与供电频率成正比,即: T = Kf × f 其中,T为电磁转矩;Kf为比例常数;f为供电频率。 为了使电动机在不同转速下都能获得最佳效率,需要通
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved